Author
Listed:
- Fuqiang Chen
(Department of Artificial Intelligence, Guangzhou Huashang College, Guangzhou 511300, China)
- Shitong Ye
(Department of Artificial Intelligence, Guangzhou Huashang College, Guangzhou 511300, China)
- Jianfeng Wang
(College of Design, Hanyang University, Ansan 15588, Republic of Korea)
- Jia Luo
(School of Electrical Engineering, Shandong University, Jinan 250000, China)
Abstract
With the rapid development of large model technology, data storage as well as collection is very important to improve the accuracy of model training, and Feature Selection (FS) methods can greatly eliminate redundant features in the data warehouse and improve the interpretability of the model, which makes it particularly important in the field of large model training. In order to better reduce redundant features in data warehouses, this paper proposes an enhanced Secretarial Bird Optimization Algorithm (SBOA), called BSFSBOA, by combining three learning strategies. First, for the problem of insufficient algorithmic population diversity in SBOA, the best-rand exploration strategy is proposed, which utilizes the randomness and optimality of random individuals as well as optimal individuals to effectively improve the population diversity of the algorithm. Second, to address the imbalance in the exploration/exploitation phase of SBOA, the segmented balance strategy is proposed to improve the balance by segmenting the individuals in the population, targeting individuals of different natures with different degrees of exploration and exploitation performance, and improving the quality of the FS subset when the algorithm is solved. Finally, for the problem of insufficient exploitation performance of SBOA, a four-role exploitation strategy is proposed, which strengthens the effective exploitation ability of the algorithm and enhances the classification accuracy of the FS subset by different degrees of guidance through the four natures of individuals in the population. Subsequently, the proposed BSFSBOA-based FS method is applied to solve 36 FS problems involving low, medium, and high dimensions, and the experimental results show that, compared to SBOA, BSFSBOA improves the performance of classification accuracy by more than 60%, also ranks first in feature subset size, obtains the least runtime, and confirms that the BSFSBOA-based FS method is a robust FS method with efficient solution performance, high stability, and high practicality.
Suggested Citation
Fuqiang Chen & Shitong Ye & Jianfeng Wang & Jia Luo, 2025.
"Multi-Strategy Improved Binary Secretarial Bird Optimization Algorithm for Feature Selection,"
Mathematics, MDPI, vol. 13(4), pages 1-46, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:668-:d:1594045
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:668-:d:1594045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.