IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p668-d1594045.html
   My bibliography  Save this article

Multi-Strategy Improved Binary Secretarial Bird Optimization Algorithm for Feature Selection

Author

Listed:
  • Fuqiang Chen

    (Department of Artificial Intelligence, Guangzhou Huashang College, Guangzhou 511300, China)

  • Shitong Ye

    (Department of Artificial Intelligence, Guangzhou Huashang College, Guangzhou 511300, China)

  • Jianfeng Wang

    (College of Design, Hanyang University, Ansan 15588, Republic of Korea)

  • Jia Luo

    (School of Electrical Engineering, Shandong University, Jinan 250000, China)

Abstract

With the rapid development of large model technology, data storage as well as collection is very important to improve the accuracy of model training, and Feature Selection (FS) methods can greatly eliminate redundant features in the data warehouse and improve the interpretability of the model, which makes it particularly important in the field of large model training. In order to better reduce redundant features in data warehouses, this paper proposes an enhanced Secretarial Bird Optimization Algorithm (SBOA), called BSFSBOA, by combining three learning strategies. First, for the problem of insufficient algorithmic population diversity in SBOA, the best-rand exploration strategy is proposed, which utilizes the randomness and optimality of random individuals as well as optimal individuals to effectively improve the population diversity of the algorithm. Second, to address the imbalance in the exploration/exploitation phase of SBOA, the segmented balance strategy is proposed to improve the balance by segmenting the individuals in the population, targeting individuals of different natures with different degrees of exploration and exploitation performance, and improving the quality of the FS subset when the algorithm is solved. Finally, for the problem of insufficient exploitation performance of SBOA, a four-role exploitation strategy is proposed, which strengthens the effective exploitation ability of the algorithm and enhances the classification accuracy of the FS subset by different degrees of guidance through the four natures of individuals in the population. Subsequently, the proposed BSFSBOA-based FS method is applied to solve 36 FS problems involving low, medium, and high dimensions, and the experimental results show that, compared to SBOA, BSFSBOA improves the performance of classification accuracy by more than 60%, also ranks first in feature subset size, obtains the least runtime, and confirms that the BSFSBOA-based FS method is a robust FS method with efficient solution performance, high stability, and high practicality.

Suggested Citation

  • Fuqiang Chen & Shitong Ye & Jianfeng Wang & Jia Luo, 2025. "Multi-Strategy Improved Binary Secretarial Bird Optimization Algorithm for Feature Selection," Mathematics, MDPI, vol. 13(4), pages 1-46, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:668-:d:1594045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiménez-Cordero, Asunción & Morales, Juan Miguel & Pineda, Salvador, 2021. "A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification," European Journal of Operational Research, Elsevier, vol. 293(1), pages 24-35.
    2. El-Sayed M. El-kenawy & Fahad Albalawi & Sayed A. Ward & Sherif S. M. Ghoneim & Marwa M. Eid & Abdelaziz A. Abdelhamid & Nadjem Bailek & Abdelhameed Ibrahim, 2022. "Feature Selection and Classification of Transformer Faults Based on Novel Meta-Heuristic Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    3. Abedi Pahnehkolaei, Seyed Mehdi & Alfi, Alireza & Tenreiro Machado, J.A., 2022. "Analytical stability analysis of the fractional-order particle swarm optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Liping & Xie, Siqiang & Lopes, António M. & Li, Huafeng & Bao, Xinyuan & Zhang, Chaolong & Li, Penghua, 2024. "A new SOH estimation method for Lithium-ion batteries based on model-data-fusion," Energy, Elsevier, vol. 286(C).
    2. Liu, Lianggui & Zhang, Rui & Chen, Qiuxia, 2022. "High-performance global peak tracking technique for PV arrays subject to rapidly changing PSC," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Ozcan, Erhan C. & Görgülü, Berk & Baydogan, Mustafa G., 2024. "Column generation-based prototype learning for optimizing area under the receiver operating characteristic curve," European Journal of Operational Research, Elsevier, vol. 314(1), pages 297-307.
    4. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    5. Mehmood, Khizer & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Cheema, Khalid Mehmood & Raja, Muhammad Asif Zahoor & Shu, Chi-Min, 2023. "Novel knacks of chaotic maps with Archimedes optimization paradigm for nonlinear ARX model identification with key term separation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Naveed Ahmed Malik & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Sultan S. Alshamrani, 2022. "Knacks of Fractional Order Swarming Intelligence for Parameter Estimation of Harmonics in Electrical Systems," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    7. Junqi Zhu & Li Yang & Xue Wang & Haotian Zheng & Mengdi Gu & Shanshan Li & Xin Fang, 2022. "Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    8. Labbé, Martine & Landete, Mercedes & Leal, Marina, 2023. "Dendrograms, minimum spanning trees and feature selection," European Journal of Operational Research, Elsevier, vol. 308(2), pages 555-567.
    9. Khan, Babar Sattar & Qamar, Affaq & Ullah, Farman & Bilal, Muhammad, 2023. "Ingenuity of Shannon entropy-based fractional order hybrid swarming strategy to solve optimal power flows," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Lin, Fengming & Fang, Shu-Cherng & Fang, Xiaolei & Gao, Zheming & Luo, Jian, 2024. "A distributionally robust chance-constrained kernel-free quadratic surface support vector machine," European Journal of Operational Research, Elsevier, vol. 316(1), pages 46-60.
    11. Borghi, Giacomo & Grassi, Sara & Pareschi, Lorenzo, 2023. "Consensus based optimization with memory effects: Random selection and applications," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Mi, Yunlong & Quan, Pei & Shi, Yong & Wang, Zongrun, 2022. "Concept-cognitive computing system for dynamic classification," European Journal of Operational Research, Elsevier, vol. 301(1), pages 287-299.
    13. Abdelaziz A. Abdelhamid & El-Sayed M. El-Kenawy & Nima Khodadadi & Seyedali Mirjalili & Doaa Sami Khafaga & Amal H. Alharbi & Abdelhameed Ibrahim & Marwa M. Eid & Mohamed Saber, 2022. "Classification of Monkeypox Images Based on Transfer Learning and the Al-Biruni Earth Radius Optimization Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-29, October.
    14. Díaz, Verónica & Montoya, Ricardo & Maldonado, Sebastián, 2023. "Preference estimation under bounded rationality: Identification of attribute non-attendance in stated-choice data using a support vector machines approach," European Journal of Operational Research, Elsevier, vol. 304(2), pages 797-812.
    15. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    16. Ma, Xuejiao & Che, Tianqi & Jiang, Qichuan, 2025. "A three-stage prediction model for firm default risk: An integration of text sentiment analysis," Omega, Elsevier, vol. 131(C).
    17. Christy Jackson Joshua & Prassanna Jayachandran & Abdul Quadir Md & Arun Kumar Sivaraman & Kong Fah Tee, 2023. "Clustering, Routing, Scheduling, and Challenges in Bio-Inspired Parameter Tuning of Vehicular Ad Hoc Networks for Environmental Sustainability," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    18. Abdelhameed Ibrahim & El-Sayed M. El-kenawy & A. E. Kabeel & Faten Khalid Karim & Marwa M. Eid & Abdelaziz A. Abdelhamid & Sayed A. Ward & Emad M. S. El-Said & M. El-Said & Doaa Sami Khafaga, 2023. "Al-Biruni Earth Radius Optimization Based Algorithm for Improving Prediction of Hybrid Solar Desalination System," Energies, MDPI, vol. 16(3), pages 1-20, January.
    19. Yurdagül Benteşen Yakut, 2024. "Optimization of Proportional–Integral (PI) and Fractional-Order Proportional–Integral (FOPI) Parameters Using Particle Swarm Optimization/Genetic Algorithm (PSO/GA) in a DC/DC Converter for Improving ," Energies, MDPI, vol. 17(4), pages 1-19, February.
    20. Hanyu Rao & Jiancheng Li & Xiaojun Sun, 2025. "Demand Forecasting and Allocation Optimization of Green Power Grid Supply Chain Based on Machine Learning Algorithm: A Study Based on the Whole-Process Data of Power Grid Materials," Sustainability, MDPI, vol. 17(3), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:668-:d:1594045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.