Author
Abstract
Optimizing transportation in both natural and engineered systems, particularly within complex network environments, has become a pivotal area of research. Traditional methods for mitigating congestion primarily focus on routing strategies that utilize first-in-first-out (FIFO) queueing disciplines to determine the processing order of packets in buffer queues. However, these approaches often fail to explore the benefits of incorporating priority mechanisms directly within the routing decision-making processes, leaving significant room for improvement in congestion management. This study introduces an innovative generalized priority queueing (GPQ) strategy, specifically designed as an enhancement to existing FIFO-based routing methods. It is important to note that GPQ is not a new queue scheduling algorithm (e.g., deficit round robin (DRR) or weighted fair queuing (WFQ)), which typically manage multiple queues in broader queue management scenarios. Instead, GPQ integrates a dynamic priority-based mechanism into the routing layer, allowing the routing function to adaptively prioritize packets within a single buffer queue based on network conditions and packet attributes. By focusing on the routing strategy itself, GPQ improves the process of selecting packets for forwarding, thereby optimizing congestion management across the network. The effectiveness of the GPQ strategy is evaluated through extensive simulations on single-layer, two-layer, and dynamic networks. The results demonstrate significant improvements in key performance metrics, such as network throughput and average packet delay, when compared to traditional FIFO-based routing methods. These findings underscore the versatility and robustness of the GPQ strategy, emphasizing its capability to enhance network efficiency across diverse topologies and configurations. By addressing the inherent limitations of FIFO-based routing strategies and proposing a generalized yet scalable enhancement, this study makes a notable contribution to network optimization. The GPQ strategy provides a practical and adaptable solution for improving transportation efficiency in complex networks, bridging the gap between conventional routing techniques and emerging demands for dynamic congestion management.
Suggested Citation
Ganhua Wu, 2025.
"An Innovative Priority Queueing Strategy for Mitigating Traffic Congestion in Complex Networks,"
Mathematics, MDPI, vol. 13(3), pages 1-21, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:3:p:495-:d:1582169
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:495-:d:1582169. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.