Author
Listed:
- Guanglin Liang
(School of Aeronautics Astronautics, Shenzhen Campus of Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen 518107, China)
- Linchong Huang
(School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China)
- Chengyong Cao
(College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China)
Abstract
In tunnel engineering, joint shear slip caused by external disturbances is a key factor contributing to landslides, instability of surrounding rock masses, and related hazards. Therefore, accurately characterizing the macromechanical properties of joints is essential for ensuring engineering safety. Given the significant influence of rock joint morphology on mechanical behavior, this study employs the frequency spectrum fractal dimension (D) and the frequency domain amplitude integral (Rq) as quantitative descriptors of joint morphology. Using Fourier transform techniques, a reconstruction method is developed to model joints with arbitrary shape characteristics. The numerical model is calibrated through 3D printing and direct shear tests. Systematic parameter analysis validates the selected quantitative indices as effective descriptors of joint morphology. Furthermore, multiple machine learning algorithms are employed to construct a robust predictive model. Machine learning, recognized as a rapidly advancing field, plays a pivotal role in data-driven engineering applications due to its powerful analytical capabilities. In this study, six algorithms—Random Forest (RF), Support Vector Regression (SVR), BP Neural Network, GA-BP Neural Network, Genetic Programming (GP), and ANN-based MCD—are evaluated using 300 samples. The performance of each algorithm is assessed through comparative analysis of their predictive accuracy based on correlation coefficients. The results demonstrate that all six algorithms achieve satisfactory predictive performance. Notably, the Random Forest (RF) algorithm excels in rapid and accurate predictions when handling similar training data, while the ANN-based MCD algorithm consistently delivers stable and precise results across diverse datasets.
Suggested Citation
Guanglin Liang & Linchong Huang & Chengyong Cao, 2025.
"Analysis and Prediction of Grouting Reinforcement Performance of Broken Rock Considering Joint Morphology Characteristics,"
Mathematics, MDPI, vol. 13(2), pages 1-20, January.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:2:p:264-:d:1567465
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:264-:d:1567465. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.