IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p179-d1561930.html
   My bibliography  Save this article

Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters

Author

Listed:
  • Paul Rilstone

    (Department of Economics, York University, Toronto, ON M3J 1P3, Canada)

Abstract

Higher-order asymptotic methods for nonlinear models with nuisance parameters are developed. We allow for both one-step estimators, in which the nuisance and parameters of interest are jointly estimated; and also two-step (or iterated) estimators, in which the nuisance parameters are first estimated. The properties of the former, although in principle simpler to conceptualize, are more difficult to establish explicitly. The iterated estimators allow for a variety of scenarios. The results indicate when second-order considerations should be taken into account when conducting inferences with two-step estimators. The results in the paper accomplish three objectives: (i) provide simpler methods for deriving higher-order moments when nuisance parameters are present; (ii) indicate more explicitly the sources of deviations of estimators’ sampling distributions from that given by standard first-order asymptotic theory; and, in turn, (iii) indicate in which situations the corrections (either analytically or by a resampling method such as bootstrap or jackknife) should be made when making inferences. We illustrate using several popular examples in econometrics. We also provide a numerical example which highlights how a simple analytical bias correction can improve inferences.

Suggested Citation

  • Paul Rilstone, 2025. "Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters," Mathematics, MDPI, vol. 13(2), pages 1-39, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:179-:d:1561930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Gubhinder Kundhi & Paul Rilstone, 2020. "Simplified Matrix Methods for Multivariate Edgeworth Expansions," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(2), pages 293-326, June.
    3. Qian Chen & David Giles, 2012. "Finite-sample properties of the maximum likelihood estimator for the binary logit model with random covariates," Statistical Papers, Springer, vol. 53(2), pages 409-426, May.
    4. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    5. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    6. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    7. Rilstone, Paul & Srivastava, V. K. & Ullah, Aman, 1996. "The second-order bias and mean squared error of nonlinear estimators," Journal of Econometrics, Elsevier, vol. 75(2), pages 369-395, December.
    8. Paul Rilstone, 2021. "Higher-Order Stochastic Expansions and Approximate Moments for Non-linear Models with Heterogeneous Observations," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 99-120, December.
    9. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    10. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    11. Yong Bao & Aman Ullah, 2009. "On skewness and kurtosis of econometric estimators," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 232-247, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Creel & Dennis Kristensen, 2011. "Indirect likelihood inference," UFAE and IAE Working Papers 874.11, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    2. Yong Bao & Aman Ullah, 2021. "Analytical Finite Sample Econometrics: From A. L. Nagar to Now," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 17-37, December.
    3. Patrik Guggenberger & Jinyong Hahn, 2005. "Finite Sample Properties of the Two-Step Empirical Likelihood Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 247-263.
    4. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    5. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    7. Hausman, Jerry & Lewis, Randall & Menzel, Konrad & Newey, Whitney, 2011. "Properties of the CUE estimator and a modification with moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 45-57.
    8. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    9. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    10. Jinyong Hahn & David W. Hughes & Guido Kuersteiner & Whitney K. Newey, 2024. "Efficient bias correction for cross‐section and panel data," Quantitative Economics, Econometric Society, vol. 15(3), pages 783-816, July.
    11. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    12. Marcelo Moreira & Geert Ridder, 2019. "Efficiency loss of asymptotically efficient tests in an instrumental variables regression," CeMMAP working papers CWP03/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    14. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    15. Li Dai & Lorraine Eden & Paul W. Beamish, 2017. "Caught in the crossfire: Dimensions of vulnerability and foreign multinationals' exit from war-afflicted countries," Strategic Management Journal, Wiley Blackwell, vol. 38(7), pages 1478-1498, July.
    16. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    17. Alexis Akira Toda & Kieran James Walsh, 2017. "Fat tails and spurious estimation of consumption‐based asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1156-1177, September.
    18. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    19. Eric JONDEAU & Herve LE BIHAN, 2003. "ML vs GMM Estimates of Hybrid Macroeconomic Models (With an Application to the "New Phillips Curve")," Econometrics 0303006, University Library of Munich, Germany.
    20. Albouy, David, 2006. "The Colonial Origins of Comparative Development: An Investigation of the Settler Mortality Data," Center for International and Development Economics Research, Working Paper Series qt8kt576x8, Center for International and Development Economics Research, Institute for Business and Economic Research, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:179-:d:1561930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.