IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2024i1p35-d1553813.html
   My bibliography  Save this article

Extensions to Mean–Geometric Mean Linking

Author

Listed:
  • Alexander Robitzsch

    (IPN—Leibniz Institute for Science and Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany
    Centre for International Student Assessment (ZIB), Olshausenstraße 62, 24118 Kiel, Germany)

Abstract

Mean-geometric mean (MGM) linking is a widely used method for linking two groups within the two-parameter logistic (2PL) item response model. However, the presence of differential item functioning (DIF) can lead to biased parameter estimates using the traditional MGM method. To address this, alternative linking methods based on robust loss functions have been proposed. In this article, the conventional L 2 loss function is compared with the L 0.5 and L 0 loss functions in MGM linking. Our results suggest that robust loss functions are preferable when dealing with outlying DIF effects, with the L 0 function showing particular advantages in tests with larger item sets and sample sizes. Additionally, a simulation study demonstrates that defining MGM linking based on item intercepts rather than item difficulties leads to more accurate linking parameter estimates. Finally, robust Haberman linking slightly outperforms robust MGM linking in two-group comparisons.

Suggested Citation

  • Alexander Robitzsch, 2024. "Extensions to Mean–Geometric Mean Linking," Mathematics, MDPI, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:35-:d:1553813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/1/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/1/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robin Shealy & William Stout, 1993. "A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 159-194, June.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Michela Battauz, 2017. "Multiple Equating of Separate IRT Calibrations," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 610-636, September.
    4. Valentina Sansivieri & Marie Wiberg & Mariagiulia Matteucci, 2017. "A Review of Test Equating Methods with a Special Focus on IRT-Based Approaches," Statistica, Department of Statistics, University of Bologna, vol. 77(4), pages 329-352.
    5. Peter F. Halpin, 2024. "Differential Item Functioning via Robust Scaling," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 796-821, September.
    6. Wim J. Linden & Michelle D. Barrett, 2016. "Linking Item Response Model Parameters," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 650-673, September.
    7. Battauz, Michela, 2015. "equateIRT: An R Package for IRT Test Equating," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i07).
    8. Alexander Robitzsch, 2024. "Examining Differences of Invariance Alignment in the Mplus Software and the R Package Sirt," Mathematics, MDPI, vol. 12(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Robitzsch, 2025. "Comparing Robust Haberman Linking and Invariance Alignment," Stats, MDPI, vol. 8(1), pages 1-15, January.
    2. Alexander Robitzsch, 2024. "Bias-Reduced Haebara and Stocking–Lord Linking," J, MDPI, vol. 7(3), pages 1-12, September.
    3. Alexander Robitzsch, 2020. "L p Loss Functions in Invariance Alignment and Haberman Linking with Few or Many Groups," Stats, MDPI, vol. 3(3), pages 1-38, August.
    4. Alexander Robitzsch, 2024. "Estimation of Standard Error, Linking Error, and Total Error for Robust and Nonrobust Linking Methods in the Two-Parameter Logistic Model," Stats, MDPI, vol. 7(3), pages 1-21, June.
    5. Michela Battauz, 2023. "Testing for differences in chain equating," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 134-145, May.
    6. Alexander Robitzsch, 2023. "Linking Error in the 2PL Model," J, MDPI, vol. 6(1), pages 1-27, January.
    7. Michelle D. Barrett & Wim J. van der Linden, 2019. "Estimating Linking Functions for Response Model Parameters," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 180-209, April.
    8. Björn Andersson & Marie Wiberg, 2017. "Item Response Theory Observed-Score Kernel Equating," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 48-66, March.
    9. Alexander Robitzsch, 2023. "Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning," Stats, MDPI, vol. 6(1), pages 1-17, January.
    10. Michela Battauz, 2017. "Multiple Equating of Separate IRT Calibrations," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 610-636, September.
    11. Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2024. "DIF analysis with unknown groups and anchor items," LSE Research Online Documents on Economics 121991, London School of Economics and Political Science, LSE Library.
    12. John Patrick Lalor & Pedro Rodriguez, 2023. "py-irt : A Scalable Item Response Theory Library for Python," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 5-13, January.
    13. Michela Battauz, 2019. "On Wald tests for differential item functioning detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 103-118, March.
    14. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    15. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    16. Carolina Navarro & Luis Ayala & José Labeaga, 2010. "Housing deprivation and health status: evidence from Spain," Empirical Economics, Springer, vol. 38(3), pages 555-582, June.
    17. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    18. Cafarelli Ryan & Rigdon Christopher J. & Rigdon Steven E., 2012. "Models for Third Down Conversion in the National Football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-26, October.
    19. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    20. Michela Battauz & Ruggero Bellio, 2011. "Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 40-56, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:35-:d:1553813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.