IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i6p922-d1360850.html
   My bibliography  Save this article

Counting Rules for Computing the Number of Independent Sets of a Grid Graph

Author

Listed:
  • Guillermo De Ita Luna

    (Faculty of Computer Sciences, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
    These authors contributed equally to this work.)

  • Pedro Bello López

    (Faculty of Computer Sciences, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
    These authors contributed equally to this work.)

  • Raymundo Marcial-Romero

    (Faculty of Engineering, Universidad Autónoma del Estado de México, Toluca 50000, Mexico
    These authors contributed equally to this work.)

Abstract

The issue of counting independent sets of a graph, G , represented as i ( G ) , is a significant challenge within combinatorial mathematics. This problem finds practical applications across various fields, including mathematics, computer science, physics, and chemistry. In chemistry, i ( G ) is recognized as the Merrifield–Simmons (M-S) index for molecular graphs, which is one of the most relevant topological indices related to the boiling point in chemical compounds. This article introduces an innovative algorithm designed for tallying independent sets within grid-like structures. The proposed algorithm is based on the ‘branch-and-bound’ technique and is applied to compute i ( G m , n ) for a square grid formed by m rows and n columns. The proposed approach incorporates the widely recognized vertex reduction rule as the basis for splitting the current subgraph. The methodology involves breaking down the initial grid iteratively until outerplanar graphs are achieved, serving as the ’basic cases’ linked to the leaf nodes of the computation tree or when no neighborhood is incident to a minimum of five rectangular internal faces. The time complexity of the branch-and-bound algorithm speeds up the computation of i ( G m , n ) compared to traditional methods, like the transfer matrix method. Furthermore, the scope of the proposed algorithm is more general than the algorithms focused on grids since it could be applied to process general mesh graphs.

Suggested Citation

  • Guillermo De Ita Luna & Pedro Bello López & Raymundo Marcial-Romero, 2024. "Counting Rules for Computing the Number of Independent Sets of a Grid Graph," Mathematics, MDPI, vol. 12(6), pages 1-14, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:922-:d:1360850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/6/922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/6/922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Jia-Bao & Pan, Xiang-Feng & Hu, Fu-Tao & Hu, Feng-Feng, 2015. "Asymptotic Laplacian-energy-like invariant of lattices," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia-Bao Liu & S. N. Daoud, 2019. "Number of Spanning Trees in the Sequence of Some Graphs," Complexity, Hindawi, vol. 2019, pages 1-22, March.
    2. Praba, B. & Saranya, R., 2020. "Application of the graph cellular automaton in generating languages," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 111-121.
    3. Liu, Jia-Bao & Pan, Xiang-Feng, 2015. "A unified approach to the asymptotic topological indices of various lattices," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 62-73.
    4. Liu, Jia-Bao & Pan, Xiang-Feng, 2016. "Minimizing Kirchhoff index among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 84-88.
    5. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    6. Shaohui Wang & Chunxiang Wang & Lin Chen & Jia-Bao Liu & Zehui Shao, 2018. "Maximizing and Minimizing Multiplicative Zagreb Indices of Graphs Subject to Given Number of Cut Edges," Mathematics, MDPI, vol. 6(11), pages 1-10, October.
    7. Jia-Bao Liu & Mobeen Munir & Amina Yousaf & Asim Naseem & Khudaija Ayub, 2019. "Distance and Adjacency Energies of Multi-Level Wheel Networks," Mathematics, MDPI, vol. 7(1), pages 1-9, January.
    8. Das, Kinkar Ch. & Mojallal, Seyed Ahmad, 2016. "Extremal Laplacian energy of threshold graphs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 267-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:922-:d:1360850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.