IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i4p603-d1340824.html
   My bibliography  Save this article

Reliability of Partitioning Metric Space Data

Author

Listed:
  • Yariv N. Marmor

    (Department of Industrial Engineering and Management, Braude College of Engineering, Karmiel 2161002, Israel)

  • Emil Bashkansky

    (Department of Industrial Engineering and Management, Braude College of Engineering, Karmiel 2161002, Israel)

Abstract

The process of sorting or categorizing objects or information about these objects into clusters according to certain criteria is a fundamental procedure in data analysis. Where it is feasible to determine the distance metric for any pair of objects, the significance and reliability of the separation can be evaluated by calculating the separation/segregation power ( SP ) index proposed herein. The latter index is the ratio of the average inter distance to the average intra distance, independent of the scale parameter. Here, the calculated SP value is compared to its statistical distribution obtained by a simulation study for a given partition under the homogeneity null hypothesis to draw a conclusion using standard statistical procedures. The proposed concept is illustrated using three examples representing different types of objects under study. Some general considerations are given regarding the nature of the SP distribution under the null hypothesis and its dependence on the number of divisions and the amount of data within them. A detailed modus operandi (working method) for analyzing a metric data partition is also offered.

Suggested Citation

  • Yariv N. Marmor & Emil Bashkansky, 2024. "Reliability of Partitioning Metric Space Data," Mathematics, MDPI, vol. 12(4), pages 1-18, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:603-:d:1340824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/4/603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/4/603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tamar Gadrich & Emil Bashkansky & Ričardas Zitikis, 2015. "Assessing variation: a unifying approach for all scales of measurement," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1145-1167, May.
    2. Christian H. Weiß, 2019. "On some measures of ordinal variation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(16), pages 2905-2926, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanacore, Amalia & Pellegrino, Maria Sole, 2021. "Testing inter-group ranking heterogeneity: do patient characteristics matter for prioritization of quality improvements in healthcare service?," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    2. Raquel González del Pozo & Luis C. Dias & José Luis García-Lapresta, 2020. "Using Different Qualitative Scales in a Multi-Criteria Decision-Making Procedure," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    3. Amalia Vanacore & Maria Sole Pellegrino, 2019. "Checking quality of sensory data via an agreement-based approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2545-2556, September.
    4. Célestin C. Kokonendji & Sobom M. Somé, 2021. "Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics," Stats, MDPI, vol. 4(1), pages 1-22, March.
    5. Amalia Vanacore & Maria Sole Pellegrino, 2022. "A weighted distance metric for assessing ranking dissimilarity and inter-group heterogeneity," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 175-185, August.
    6. Vladimir Turetsky & Emil Bashkansky, 2022. "Ordinal response variation of the polytomous Rasch model," METRON, Springer;Sapienza Università di Roma, vol. 80(3), pages 305-330, December.
    7. Stefania Capecchi & Domenico Piccolo, 2017. "Dealing with heterogeneity in ordinal responses," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2375-2393, September.
    8. Cappelletti-Montano, Beniamino & Columbu, Silvia & Montaldo, Stefano & Musio, Monica, 2022. "Interpreting the outcomes of research assessments: A geometrical approach," Journal of Informetrics, Elsevier, vol. 16(1).
    9. Klein, Ingo & Mangold, Benedikt, 2015. "Cumulative Paired 𝜙-Entropy," FAU Discussion Papers in Economics 07/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:4:p:603-:d:1340824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.