IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3950-d1544536.html
   My bibliography  Save this article

DeepONet-Inspired Architecture for Efficient Financial Time Series Prediction

Author

Listed:
  • Zeeshan Ahmad

    (School of Cyber Science and Engineering, Ningbo University of Technology, Ningbo 315211, China)

  • Shudi Bao

    (Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315201, China)

  • Meng Chen

    (School of Cyber Science and Engineering, Ningbo University of Technology, Ningbo 315211, China)

Abstract

Financial time series prediction is a fundamental problem in investment and risk management. Deep learning models, such as multilayer perceptrons, Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM), have been widely used in modeling time series data by incorporating historical information. Among them, LSTM has shown excellent performance in capturing long-term temporal dependencies in time-series data, owing to its enhanced internal memory mechanism. In spite of the success of these models, it is observed that in the presence of sharp changing points, these models fail to perform. To address this problem, we propose, in this article, an innovative financial time series prediction method inspired by the Deep Operator Network (DeepONet) architecture, which uses a combination of transformer architecture and a one-dimensional CNN network for processing feature-based information, followed by an LSTM based network for processing temporal information. It is therefore named the CNN–LSTM–Transformer (CLT) model. It not only incorporates external information to identify latent patterns within the financial data but also excels in capturing their temporal dynamics. The CLT model adapts to evolving market conditions by leveraging diverse deep-learning techniques. This dynamic adaptation of the CLT model plays a pivotal role in navigating abrupt changes in the financial markets. Furthermore, the CLT model improves the long-term prediction accuracy and stability compared with state-of-the-art existing deep learning models and also mitigates adverse effects of market volatility. The experimental results show the feasibility and superiority of the proposed CLT model in terms of prediction accuracy and robustness as compared to existing prediction models. Moreover, we posit that the innovation encapsulated in the proposed DeepONet-inspired CLT model also holds promise for applications beyond the confines of finance, such as remote sensing, data mining, natural language processing, and so on.

Suggested Citation

  • Zeeshan Ahmad & Shudi Bao & Meng Chen, 2024. "DeepONet-Inspired Architecture for Efficient Financial Time Series Prediction," Mathematics, MDPI, vol. 12(24), pages 1-27, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3950-:d:1544536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poufinas, Thomas, 2008. "On the number of deviations of Geometric Brownian Motion with drift from its extreme points with applications to transaction costs," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3040-3046, December.
    2. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    3. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    4. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    5. Darko B. Vuković & Sonja D. Radenković & Ivana Simeunović & Vyacheslav Zinovev & Milan Radovanović, 2024. "Predictive Patterns and Market Efficiency: A Deep Learning Approach to Financial Time Series Forecasting," Mathematics, MDPI, vol. 12(19), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    2. Karstanje, Dennis & Sojli, Elvira & Tham, Wing Wah & van der Wel, Michel, 2013. "Economic valuation of liquidity timing," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5073-5087.
    3. Manzan, S. & Zerom, D., 2005. "A Multi-Step Forecast Density," CeNDEF Working Papers 05-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    4. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    5. Bartosz Bieganowski & Robert Ślepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Working Papers 2024-03, Faculty of Economic Sciences, University of Warsaw.
    6. Salas-Molina, Francisco & Martin, Francisco J. & Rodríguez-Aguilar, Juan A. & Serrà, Joan & Arcos, Josep Ll., 2017. "Empowering cash managers to achieve cost savings by improving predictive accuracy," International Journal of Forecasting, Elsevier, vol. 33(2), pages 403-415.
    7. Patrick T. Kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2016. "Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation," Applied Economics, Taylor & Francis Journals, vol. 48(26), pages 2412-2427, June.
    8. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    9. Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
    10. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    11. Li, Dandan & Ghoshray, Atanu & Morley, Bruce, 2013. "An empirical study of nonlinear adjustment in the UIP model using a smooth transition regression model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 109-120.
    12. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    13. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2018. "Forecasting exchange rate using Variational Mode Decomposition and entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 15-25.
    14. Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
    15. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    16. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    17. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    18. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660, July.
    19. Bernard Moeketsi Hlalele, 2022. "A Comparative Analysis Of Holts-Winters’ And Neural Network Prediction Models On Annual Bloemfontein’S Precipitation: Risk Aversion," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 4(1), pages 17-21, April.
    20. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3950-:d:1544536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.