IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i22p3518-d1518629.html
   My bibliography  Save this article

New Results on Graph Matching from Degree-Preserving Growth

Author

Listed:
  • Péter L. Erdős

    (Department of Combinatorics and Applications, Alfréd Rényi Institute of Mathematics (HUN-REN), Reáltanoda utca 13–15, H-1053 Budapest, Hungary)

  • Shubha R. Kharel

    (Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA
    These authors contributed equally to this work.)

  • Tamás Róbert Mezei

    (Department of Combinatorics and Applications, Alfréd Rényi Institute of Mathematics (HUN-REN), Reáltanoda utca 13–15, H-1053 Budapest, Hungary
    These authors contributed equally to this work.)

  • Zoltán Toroczkai

    (Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA)

Abstract

The recently introduced model in S. R. Kharel et al.’s study [Degree-preserving network growth. Nature Physics 2022 , 18 , 100–106] uses matchings to insert new vertices of prescribed degrees into the current graph of an ever-growing graph sequence. The process depends both on the size of the largest available matching, which is the focus of this paper, as well as on the actual choice of the matching. Here, we first show that the question of whether a graphic degree sequence, extended with a new degree 2 δ , remains graphic is equivalent to the existence of a realization of the original degree sequence with a matching of size δ . Secondly, we present lower bounds for the size of the maximum matchings in any realization of the degree sequence. We then study the bounds on the size of maximal matchings in some realizations of the sequence, known as the potential matching number. We also estimate the minimum size of both maximal and maximum matchings, as determined by the degree sequence, independently of graphical realizations. Along this line we answer a question raised by T. Biedl et al.: Tight bounds on maximal and maximum matchings. Discrete Mathematics 2004 , 285 , 7–15.

Suggested Citation

  • Péter L. Erdős & Shubha R. Kharel & Tamás Róbert Mezei & Zoltán Toroczkai, 2024. "New Results on Graph Matching from Degree-Preserving Growth," Mathematics, MDPI, vol. 12(22), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3518-:d:1518629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/22/3518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/22/3518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    2. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    3. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    4. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    5. Ma, Weiyuan & Bao, Xionggai & Ma, Chenjun, 2024. "Controllability of higher-order networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    6. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Yin, Haofei & Cui, Xiaohua & Zeng, An, 2024. "An innovative defense strategy against targeted spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    8. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    9. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    10. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    11. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    12. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    13. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    14. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    15. Xian Xi & Xiangyun Gao & Xiaotian Sun & Huiling Zheng & Congcong Wu, 2024. "Dynamic analysis and application of network structure control in risk conduction in the industrial chain," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    16. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    17. Gennady Ougolnitsky & Olga Gorbaneva, 2022. "Sustainable Management in Active Networks," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    18. Hiroyasu Inoue, 2016. "Controllability Analyses on Firm Networks Based on Comprehensive Data," Papers 1604.01322, arXiv.org.
    19. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    20. Kang, Xinyu & Wang, Minxi & Chen, Lu & Li, Xin, 2023. "Supply risk propagation of global copper industry chain based on multi-layer complex network," Resources Policy, Elsevier, vol. 85(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3518-:d:1518629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.