IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i22p3512-d1517858.html
   My bibliography  Save this article

A Finite-Time Disturbance Observer for Tracking Control of Nonlinear Systems Subject to Model Uncertainties and Disturbances

Author

Listed:
  • Manh Hung Nguyen

    (Institute of Control Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi 11917, Vietnam)

  • Kyoung Kwan Ahn

    (School of Mechanical and Automotive Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea)

Abstract

In this study, a finite-time disturbance observer (FTDOB) with a new structure is originally put forward for the motion tracking problem of a class of nonlinear systems subject to model uncertainties and exogenous disturbances. Compared to existing disturbance estimator designs in the literature, in which the estimation error only converges to the origin asymptotically under assumptions that the first and/or second derivatives are vanishing, the suggested DOB is able to estimate the disturbance exactly in finite time. Firstly, uncertainties (parametric and unstructured uncertainties), unknown dynamics, and external disturbances in system dynamics are lumped into a generalized disturbance term that is subsequently estimated by the proposed DOB. Based on this, a DOB-based backstepping controller is synthesized to ensure high-accuracy tracking performance under various working conditions. The stability analysis of not only the DOB but also the overall closed-loop system is theoretically confirmed by the Lyapunov stability theory. Finally, the advantages of the proposed FTDOB and the FTDOB-based controller over other DOBs and existing DOB-based controllers are explicitly simultaneously demonstrated by a series of numerical simulations on a second-order mechanical system and comparative experiments on an actual DC motor system.

Suggested Citation

  • Manh Hung Nguyen & Kyoung Kwan Ahn, 2024. "A Finite-Time Disturbance Observer for Tracking Control of Nonlinear Systems Subject to Model Uncertainties and Disturbances," Mathematics, MDPI, vol. 12(22), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3512-:d:1517858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/22/3512/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/22/3512/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Funing & Xue, Guangming & Qin, Bin & Li, Shenggang & Liu, Heng, 2023. "Event-triggered finite-time fuzzy control approach for fractional-order nonlinear chaotic systems with input delay," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Manh Hung Nguyen & Kyoung Kwan Ahn, 2023. "Output Feedback Robust Tracking Control for a Variable-Speed Pump-Controlled Hydraulic System Subject to Mismatched Uncertainties," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xiao-Wen & Deng, Dong-Dong & Ge, Ming-Feng & Liu, Zhi-Wei, 2024. "Neural adaptive predefined-time formation tracking control of multiple Euler–Lagrange systems with switching topologies based on hierarchical mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Thanh Ha Nguyen & Tri Cuong Do & Van Du Phan & Kyoung Kwan Ahn, 2023. "Working Performance Improvement of a Novel Independent Metering Valve System by Using a Neural Network-Fractional Order-Proportional-Integral-Derivative Controller," Mathematics, MDPI, vol. 11(23), pages 1-21, November.
    3. Manh Hung Nguyen & Kyoung Kwan Ahn, 2023. "Extended Sliding Mode Observer-Based Output Feedback Control for Motion Tracking of Electro-Hydrostatic Actuators," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    4. Xingfa Zhao & Wenhe Liao & Tingting Liu & Dongyang Zhang & Yumin Tao, 2025. "Disturbance Observer-Based Dynamic Surface Control for Servomechanisms with Prescribed Tracking Performance," Mathematics, MDPI, vol. 13(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3512-:d:1517858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.