IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i22p3485-d1516389.html
   My bibliography  Save this article

A Variant of the Growing Neural Gas Algorithm for the Design of an Electric Vehicle Charger Network

Author

Listed:
  • Manuel Curado

    (Department of Computer Science and Artificial Intelligence, University of Alicante, Campus de San Vicente, Ap. Correos 99, E-03080 Alicante, Spain
    These authors contributed equally to this work.)

  • Diego Hidalgo

    (Department of Computer Science and Artificial Intelligence, University of Alicante, Campus de San Vicente, Ap. Correos 99, E-03080 Alicante, Spain
    These authors contributed equally to this work.)

  • Jose L. Oliver

    (Department of Graphic Expression, Composition and Projects, University of Alicante, Campus de San Vicente, Ap. Correos 99, E-03080 Alicante, Spain
    These authors contributed equally to this work.)

  • Leandro Tortosa

    (Department of Computer Science and Artificial Intelligence, University of Alicante, Campus de San Vicente, Ap. Correos 99, E-03080 Alicante, Spain
    These authors contributed equally to this work.)

  • Jose F. Vicent

    (Department of Computer Science and Artificial Intelligence, University of Alicante, Campus de San Vicente, Ap. Correos 99, E-03080 Alicante, Spain
    These authors contributed equally to this work.)

Abstract

The Growing Neural Gas (GNG) algorithm constitutes an incremental neural network model based on the idea of a Self-Organizing Map (SOM), that is, unsupervised learning algorithms that reduce the dimensionality of datasets by locating similar samples close to each other. The design of an electric vehicle charging network is an essential aspect in the transition towards more sustainable and environmentally friendly mobility. The need to design and implement an efficient network that meets the needs of all users motivates us to propose the use of a model based on GNG-type neural networks for the design of the network in a specific geographical area. In this paper, a variant of this iterative neural network algorithm is used with the objective that, from an initial dataset of points in the plane, it calculates a new simplified dataset with the main characteristic that the final set of points maintains the geometric shape and topology of the original set. To demonstrate the capabilities of the algorithm, it is exemplified in a real case, in which the design of an electric vehicle charging network is proposed. This network is built by applying the algorithm, taking as the original set of points the ones formed by the nodes of the gas station network in the geographical area studied. Several tests of running the algorithm for different sizes of the final dataset are performed, showing the differences between the original network and the computationally generated one.

Suggested Citation

  • Manuel Curado & Diego Hidalgo & Jose L. Oliver & Leandro Tortosa & Jose F. Vicent, 2024. "A Variant of the Growing Neural Gas Algorithm for the Design of an Electric Vehicle Charger Network," Mathematics, MDPI, vol. 12(22), pages 1-23, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3485-:d:1516389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/22/3485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/22/3485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    2. Zhuang, Ran & Jiang, Difei & Wang, Yuan, 2023. "An approach to optimize building area ratios scheme of urban complex in different climatic conditions based on comprehensive energy performance evaluation," Applied Energy, Elsevier, vol. 329(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    2. Adil, Muhammad & Mahmud, M.A. Parvez & Kouzani, Abbas Z. & Khoo, Sui Yang, 2024. "Three-stage energy trading framework for retailers, charging stations, and electric vehicles: A game-theoretic approach," Energy, Elsevier, vol. 301(C).
    3. Faustino, Fausta J. & Lopes, José Calixto & Melo, Joel D. & Sousa, Thales & Padilha-Feltrin, Antonio & Brito, José A.S. & Garcia, Claudio O., 2023. "Identifying charging zones to allocate public charging stations for electric vehicles," Energy, Elsevier, vol. 283(C).
    4. Nayak, Dhyaan Sandeep & Misra, Shamik, 2024. "An operational scheduling framework for Electric Vehicle Battery Swapping Station under demand uncertainty," Energy, Elsevier, vol. 290(C).
    5. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhao, Yiwen & Zhan, Weipeng, 2023. "Stacking regression technology with event profile for electric vehicle fast charging behavior prediction," Applied Energy, Elsevier, vol. 336(C).
    6. Wang, Zhichao & Guo, Zhaomiao & Liu, Kai & Lin, Zhenhong & Li, Shunxi, 2024. "Multi-stage layout strategies of intercity charging and swapping infrastructure for electric logistics vehicles: random, radical, or conservative?," Transport Policy, Elsevier, vol. 153(C), pages 12-23.
    7. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2023. "Optimal pricing strategy for electric vehicle battery swapping: Pay-per-swap or subscription?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:22:p:3485-:d:1516389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.