IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i20p3187-d1496796.html
   My bibliography  Save this article

A Projection-Type Implicit Algorithm for Finding a Common Solution for Fixed Point Problems and Variational Inequality Problems

Author

Listed:
  • Vasile Berinde

    (Department of Mathematics and Computer Science, North University Centre at Baia Mare, Technical University of Cluj-Napoca, Victoriei 76, 430072 Baia Mare, Romania
    Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania)

Abstract

This paper deals with the problem of finding a common solution for a fixed point problem for strictly pseudocontractive mappings and for a certain variational inequality problem. We propose a projection-type implicit averaged algorithm and establish the strong convergence of the sequences generated by this method to the common solution for the fixed point problem and the variational inequality problem. In order to illustrate the feasibility of the hypotheses and the superiority of our theoretical results over the existing literature, an example is also presented.

Suggested Citation

  • Vasile Berinde, 2024. "A Projection-Type Implicit Algorithm for Finding a Common Solution for Fixed Point Problems and Variational Inequality Problems," Mathematics, MDPI, vol. 12(20), pages 1-17, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3187-:d:1496796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/20/3187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/20/3187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yeong-Cheng Liou, 2012. "Computing the Fixed Points of Strictly Pseudocontractive Mappings by the Implicit and Explicit Iterations," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-13, July.
    2. W. Takahashi & M. Toyoda, 2003. "Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 118(2), pages 417-428, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
    2. Yanlai Song & Luchuan Ceng, 2013. "A general iteration scheme for variational inequality problem and common fixed point problems of nonexpansive mappings in q-uniformly smooth Banach spaces," Journal of Global Optimization, Springer, vol. 57(4), pages 1327-1348, December.
    3. S. Plubtieng & T. Thammathiwat, 2010. "A viscosity approximation method for equilibrium problems, fixed point problems of nonexpansive mappings and a general system of variational inequalities," Journal of Global Optimization, Springer, vol. 46(3), pages 447-464, March.
    4. A. Tada & W. Takahashi, 2007. "Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 359-370, June.
    5. Z. Y. Huang & M. A. Noor & E. Al-Said, 2010. "On an Open Question of Takahashi for Nonexpansive Mappings and Inverse Strongly Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 194-204, October.
    6. Lili Chen & Ni Yang & Jing Zhou, 2020. "Common Attractive Points of Generalized Hybrid Multi-Valued Mappings and Applications," Mathematics, MDPI, vol. 8(8), pages 1-15, August.
    7. W. Takahashi, 2013. "Strong Convergence Theorems for Maximal and Inverse-Strongly Monotone Mappings in Hilbert Spaces and Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 781-802, June.
    8. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    9. Maryam Yazdi & Saeed Hashemi Sababe, 2024. "A New Extragradient-Viscosity Method for a Variational Inequality, an Equilibrium Problem, and a Fixed Point Problem," Mathematics, MDPI, vol. 12(22), pages 1-19, November.
    10. Yuanheng Wang & Mingyue Yuan & Bingnan Jiang, 2021. "Multi-Step Inertial Hybrid and Shrinking Tseng’s Algorithm with Meir–Keeler Contractions for Variational Inclusion Problems," Mathematics, MDPI, vol. 9(13), pages 1-13, July.
    11. S. Takahashi & W. Takahashi & M. Toyoda, 2010. "Strong Convergence Theorems for Maximal Monotone Operators with Nonlinear Mappings in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 27-41, October.
    12. Lu-Chuan Ceng & Chang-yu Wang & Jen-Chih Yao, 2008. "Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(3), pages 375-390, June.
    13. Habtu Zegeye & Naseer Shahzad, 2012. "Strong convergence of an iterative method for pseudo-contractive and monotone mappings," Journal of Global Optimization, Springer, vol. 54(1), pages 173-184, September.
    14. Xiaolong Qin & Lai-Jiu Lin & Shin Min Kang, 2011. "On a Generalized Ky Fan Inequality and Asymptotically Strict Pseudocontractions in the Intermediate Sense," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 553-579, September.
    15. L. Zeng & J. Yao, 2009. "A hybrid extragradient method for general variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 141-158, March.
    16. Z. Y. Huang & M. A. Noor, 2012. "Studies on Common Solutions of a Variational Inequality and a Fixed-Point Problem," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 525-535, August.
    17. Vahid Darvish, 2016. "Strong convergence theorem for a system of generalized mixed equilibrium problems and finite family of Bregman nonexpansive mappings in Banach spaces," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 584-603, September.
    18. Xiaolong Qin & Sun Cho & Shin Kang, 2011. "An extragradient-type method for generalized equilibrium problems involving strictly pseudocontractive mappings," Journal of Global Optimization, Springer, vol. 49(4), pages 679-693, April.
    19. Suthep Suantai & Narin Petrot & Montira Suwannaprapa, 2019. "Iterative Methods for Finding Solutions of a Class of Split Feasibility Problems over Fixed Point Sets in Hilbert Spaces," Mathematics, MDPI, vol. 7(11), pages 1-21, October.
    20. Lu-Chuan Ceng & Nicolas Hadjisavvas & Ngai-Ching Wong, 2010. "Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems," Journal of Global Optimization, Springer, vol. 46(4), pages 635-646, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3187-:d:1496796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.