Generalized Kelvin–Voigt Creep Model in Fractal Space–Time
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Khalili Golmankhaneh, Alireza & Ontiveros, Lilián Aurora Ochoa, 2023. "Fractal calculus approach to diffusion on fractal combs," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Alexander S. Balankin & Juliã N Patiã‘O Ortiz & Miguel Patiã‘O Ortiz, 2022. "Inherent Features Of Fractal Sets And Key Attributes Of Fractal Models," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(04), pages 1-23, June.
- Didier Samayoa & Alexandro Alcántara & Helvio Mollinedo & Francisco Javier Barrera-Lao & Christopher René Torres-SanMiguel, 2023. "Fractal Continuum Mapping Applied to Timoshenko Beams," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
- Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Garra, Roberto & Mainardi, Francesco & Spada, Giorgio, 2017. "A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 333-338.
- Sara S. Alzaid & Ajay Kumar & Sunil Kumar & Badr Saad T. Alkahtani, 2023. "Chaotic Behavior Of Financial Dynamical System With Generalized Fractional Operator," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(04), pages 1-20.
- Niccolini, Gianni & Rubino, Alessio & Carpinteri, Alberto, 2020. "Dimensional transitions in creeping materials due to nonlinearity and microstructural disorder," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Didier Samayoa & Liliana Alvarez-Romero & José Alfredo Jiménez-Bernal & Lucero Damián Adame & Andriy Kryvko & Claudia del C. Gutiérrez-Torres, 2024. "Torricelli’s Law in Fractal Space–Time Continuum," Mathematics, MDPI, vol. 12(13), pages 1-13, June.
- Charles Wing Ho Green & Yanzhi Liu & Yubin Yan, 2021. "Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes," Mathematics, MDPI, vol. 9(21), pages 1-25, October.
- Didier Samayoa & Alexandro Alcántara & Helvio Mollinedo & Francisco Javier Barrera-Lao & Christopher René Torres-SanMiguel, 2023. "Fractal Continuum Mapping Applied to Timoshenko Beams," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
- Li, Jing & Ma, Li, 2023. "A unified Maxwell model with time-varying viscosity via ψ-Caputo fractional derivative coined," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Khalili Golmankhaneh, Alireza & Bongiorno, Donatella, 2024. "Exact solutions of some fractal differential equations," Applied Mathematics and Computation, Elsevier, vol. 472(C).
- Ivano Colombaro & Andrea Giusti & Silvia Vitali, 2018. "Storage and Dissipation of Energy in Prabhakar Viscoelasticity," Mathematics, MDPI, vol. 6(2), pages 1-9, January.
- Garra, R. & Consiglio, A. & Mainardi, F., 2022. "A note on a modified fractional Maxwell model," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
- Bevilacqua, Luiz & Barros, Marcelo M., 2023. "The inverse problem for fractal curves solved with the dynamical approach method," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
- Zhang, Shuai & Li, Yingjun & Wang, Guicong & Qi, Zhenguang & Zhou, Yuanqin, 2024. "A novel method for calculating the fractal dimension of three-dimensional surface topography on machined surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Zhao, Zhengang & Zheng, Yunying, 2023. "A Galerkin finite element method for the space Hadamard fractional partial differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 272-289.
- Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Balankin, Alexander S. & Ramírez-Joachin, Juan & González-López, Gabriela & Gutíerrez-Hernández, Sebastián, 2022. "Formation factors for a class of deterministic models of pre-fractal pore-fracture networks," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
More about this item
Keywords
fractal creep; viscoelastic materials; fractal continuum derivative; Kelvin–Voigt creep equation; Hausdorff dimension; chemical dimension;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3099-:d:1491943. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.