IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v163y2022ics0960077922007391.html
   My bibliography  Save this article

A note on a modified fractional Maxwell model

Author

Listed:
  • Garra, R.
  • Consiglio, A.
  • Mainardi, F.

Abstract

In this paper we consider a modified fractional Maxwell model based on the application of Hadamard-type fractional derivatives. The model is physically motivated by the fact that we can take into account at the same time memory effects and the time-dependence of the viscosity coefficient. We obtain an ultra-slow relaxation response whose explicit analytic form is given by the Mittag-Leffler function with a logarithmic argument. We show graphically the main properties of this relaxation response, also with the asymptotic behaviour.

Suggested Citation

  • Garra, R. & Consiglio, A. & Mainardi, F., 2022. "A note on a modified fractional Maxwell model," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007391
    DOI: 10.1016/j.chaos.2022.112544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922007391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garra, Roberto & Mainardi, Francesco & Spada, Giorgio, 2017. "A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 333-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jing & Ma, Li, 2023. "A unified Maxwell model with time-varying viscosity via ψ-Caputo fractional derivative coined," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jing & Ma, Li, 2023. "A unified Maxwell model with time-varying viscosity via ψ-Caputo fractional derivative coined," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Charles Wing Ho Green & Yanzhi Liu & Yubin Yan, 2021. "Numerical Methods for Caputo–Hadamard Fractional Differential Equations with Graded and Non-Uniform Meshes," Mathematics, MDPI, vol. 9(21), pages 1-25, October.
    3. Ivano Colombaro & Andrea Giusti & Silvia Vitali, 2018. "Storage and Dissipation of Energy in Prabhakar Viscoelasticity," Mathematics, MDPI, vol. 6(2), pages 1-9, January.
    4. Zhao, Zhengang & Zheng, Yunying, 2023. "A Galerkin finite element method for the space Hadamard fractional partial differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 272-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.