IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3045-d1488234.html
   My bibliography  Save this article

AGV Scheduling for Optimizing Irregular Air Cargo Containers Handling at Airport Transshipment Centers

Author

Listed:
  • Jie Li

    (School of Transport and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Mingkai Zou

    (School of Transport and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Yaqiong Lv

    (School of Transport and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Di Sun

    (S.F. Express Group Co., Ltd., Shenzhen 518103, China)

Abstract

Airport transshipment centers play a pivotal role in global logistics networks, enabling the swift and efficient transfer of cargo, which is essential for maintaining supply-chain continuity and reducing delivery times. The handling of irregularly shaped air cargo containers presents new constraints for automated guided vehicles (AGVs), as these shapes can complicate loading and unloading processes, directly impacting overall operational efficiency, turnaround times, and the reliability of cargo handling. This study focuses on optimizing the scheduling of AGVs to enhance cargo-handling efficiency at these hubs, particularly for managing irregular air cargo containers. A mixed-integer linear programming (MILP) model is developed, validated for feasibility with the Gurobi solver, and designed to handle large-scale operations. It incorporates a novel approach by integrating a simulated annealing optimized genetic algorithm (GA). The experimental results demonstrate that the designed algorithm can solve models of considerable size within 8 s, offering superior time efficiency compared to the solver, and an average solution quality improvement of 12.62% over the genetic algorithm, significantly enhancing both the model’s efficiency and scalability. The enhanced AGV scheduling not only boosts operational efficiency but also ensures better integration within the global logistics framework. This research provides a robust foundation for future advancements in logistics technology, offering both theoretical and practical insights into optimizing complex transportation networks.

Suggested Citation

  • Jie Li & Mingkai Zou & Yaqiong Lv & Di Sun, 2024. "AGV Scheduling for Optimizing Irregular Air Cargo Containers Handling at Airport Transshipment Centers," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3045-:d:1488234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Peng & Ma, Jian & Zhang, Dong-Mo, 1999. "Application of the simulated annealing algorithm to the combinatorial optimisation problem with permutation property: An investigation of generation mechanism," European Journal of Operational Research, Elsevier, vol. 118(1), pages 81-94, October.
    2. Lurkin, Virginie & Schyns, Michaël, 2015. "The Airline Container Loading Problem with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 244(3), pages 955-965.
    3. Zhang, Ruiyou & Yun, Won Young & Moon, Il Kyeong, 2011. "Modeling and optimization of a container drayage problem with resource constraints," International Journal of Production Economics, Elsevier, vol. 133(1), pages 351-359, September.
    4. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdem Agbas & Ali Osman Kusakci, 2021. "A simulation approach for aircraft cargo loading considering weight and balance constraints," International Journal of Business Ecosystem & Strategy (2687-2293), Bussecon International Academy, vol. 3(1), pages 21-31, January.
    2. Xiangling Zhao & Yun Dong & Lei Zuo, 2023. "A Combinatorial Optimization Approach for Air Cargo Palletization and Aircraft Loading," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    3. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    4. Kenneth Stoop & Mario Pickavet & Didier Colle & Pieter Audenaert, 2024. "The dynamic stochastic container drayage problem with truck appointment scheduling," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 953-985, September.
    5. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    6. Wenchao Wei & Zining Dong & Jinkui Fan, 2023. "Integrated Location Selection and Scheduling Problems for Inland Container Transportation," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    7. Song, Yujian & Zhang, Jiantong & Liang, Zhe & Ye, Chunming, 2017. "An exact algorithm for the container drayage problem under a separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 231-254.
    8. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    9. Shiri, Samaneh & Huynh, Nathan, 2016. "Optimization of drayage operations with time-window constraints," International Journal of Production Economics, Elsevier, vol. 176(C), pages 7-20.
    10. Alice Vasconcelos Nobre & Caio Cézar Rodrigues Oliveira & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Gil Eduardo Guimarães & Rosley Anholon & Vitor William Batista Martins, 2022. "Analysis of Decision Parameters for Route Plans and Their Importance for Sustainability: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(2), pages 1-12, May.
    11. You, Jintao & Wang, Yuan & Xue, Zhaojie, 2023. "An exact algorithm for the multi-trip container drayage problem with truck platooning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    12. C Alabas-Uslu, 2008. "A self-tuning heuristic for a multi-objective vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 988-996, July.
    13. Xue, Zhaojie & Zhang, Canrong & Lin, Wei-Hua & Miao, Lixin & Yang, Peng, 2014. "A tabu search heuristic for the local container drayage problem under a new operation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 136-150.
    14. Yan, Xiaoyuan & Xu, Min & Xie, Chi, 2023. "Local container drayage problem with improved truck platooning operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    15. Zhang, Ruiyou & Lu, Jye-Chyi & Wang, Dingwei, 2014. "Container drayage problem with flexible orders and its near real-time solution strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 235-251.
    16. Lam, Jasmine Siu Lee & Gu, Yimiao, 2016. "A market-oriented approach for intermodal network optimisation meeting cost, time and environmental requirements," International Journal of Production Economics, Elsevier, vol. 171(P2), pages 266-274.
    17. Bombelli, Alessandro & Fazi, Stefano, 2022. "The ground handler dock capacitated pickup and delivery problem with time windows: A collaborative framework for air cargo operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    18. Fan, Tijun & Pan, Qianlan & Pan, Fei & Zhou, Wei & Chen, Jingyi, 2020. "Intelligent logistics integration of internal and external transportation with separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    19. Fazi, Stefano & Choudhary, Sourabh Kumar & Dong, Jing-Xin, 2023. "The multi-trip container drayage problem with synchronization for efficient empty containers re-usage," European Journal of Operational Research, Elsevier, vol. 310(1), pages 343-359.
    20. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3045-:d:1488234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.