IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2619-d1462976.html
   My bibliography  Save this article

The Impact of Digital Economy on TFP of Industries: Empirical Analysis Based on the Extension of Schumpeterian Model to Complex Economic Systems

Author

Listed:
  • Jiaqi Liu

    (School of Management, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Yiyang Cheng

    (School of Economics and Management, Northwest University, Xi’an 710127, China)

  • Yamei Fu

    (School of Economics and Management, Northwest University, Xi’an 710127, China
    School of Statistics, Xi’an University of Finance and Economics, Xi’an 710100, China)

  • Fei Xue

    (School of Economics and Management, Northwest University, Xi’an 710127, China)

Abstract

The digital economy (DE) is a new driver for enhancing total factor productivity (TFP). Using panel data from 30 provinces in China between 2011 and 2022, this study measures DE and TFP using the entropy-weighted TOPSIS method and the Global Malmquist–Luenberger method and further examines the impact of DE on the TFP of industries. The main findings are as follows: (1) DE can significantly improve TFP, though the extent of improvement varies. DE has the greatest impact on the TFP of the service industry, followed by the manufacturing industry, with the weakest effect on the agricultural industry. (2) The enhancement effect of DE on agriculture and the service industry is more pronounced in the central and western regions, while the improvement effect on manufacturing is more evident in the eastern region. (3) DE has facilitated the improvement of TFP in manufacturing industries such as textiles and special equipment manufacturing, as well as in service industries like wholesale and retail. However, it has not had a significant impact on the TFP of industries such as pharmaceutical manufacturing and real estate. This study has significant theoretical value and policy implications for China and other developing countries in exploring DE and achieving high-quality industrial development.

Suggested Citation

  • Jiaqi Liu & Yiyang Cheng & Yamei Fu & Fei Xue, 2024. "The Impact of Digital Economy on TFP of Industries: Empirical Analysis Based on the Extension of Schumpeterian Model to Complex Economic Systems," Mathematics, MDPI, vol. 12(17), pages 1-24, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2619-:d:1462976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2008. "A Retrospective Look at the U.S. Productivity Growth Resurgence," Journal of Economic Perspectives, American Economic Association, vol. 22(1), pages 3-24, Winter.
    2. Sushanta K. Mallick & Shirley J. Ho, 2008. "On Network Competition And The Solow Paradox: Evidence From Us Banks," Manchester School, University of Manchester, vol. 76(s1), pages 37-57, September.
    3. Bart van Ark, 2016. "The Productivity Paradox of the New Digital Economy," International Productivity Monitor, Centre for the Study of Living Standards, vol. 31, pages 3-18, Fall.
    4. Chang, Lei & Taghizadeh-Hesary, Farhad & Mohsin, Muhammad, 2023. "Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity," Resources Policy, Elsevier, vol. 82(C).
    5. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    6. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    7. Gordon, Robert J., 2018. "Declining American economic growth despite ongoing innovation," Explorations in Economic History, Elsevier, vol. 69(C), pages 1-12.
    8. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    9. Faheem Ur Rehman & Md Monirul Islam, 2023. "Financial infrastructure—total factor productivity (TFP) nexus within the purview of FDI outflow, trade openness, innovation, human capital and institutional quality: Evidence from BRICS economies," Applied Economics, Taylor & Francis Journals, vol. 55(7), pages 783-801, February.
    10. Yang, Chih-Hai, 2022. "How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan," Research Policy, Elsevier, vol. 51(6).
    11. Parteka, Aleksandra & Kordalska, Aleksandra, 2023. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," Technovation, Elsevier, vol. 125(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parteka, Aleksandra & Kordalska, Aleksandra, 2023. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," Technovation, Elsevier, vol. 125(C).
    2. Zhong, Wenli & Liu, Yang & Dong, Kangyin & Ni, Guohua, 2024. "Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China," Energy Economics, Elsevier, vol. 138(C).
    3. Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
    4. Zhai, Shaoxuan & Liu, Zhenpeng, 2023. "Artificial intelligence technology innovation and firm productivity: Evidence from China," Finance Research Letters, Elsevier, vol. 58(PB).
    5. Anderton, Robert & Jarvis, Valerie & Labhard, Vincent & Morgan, Julian & Petroulakis, Filippos & Vivian, Lara, 2020. "Virtually everywhere? Digitalisation and the euro area and EU economies," Occasional Paper Series 244, European Central Bank.
    6. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    7. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    8. Kun Wang & Bing Chen & Yuhong Li, 2024. "Technological, process or managerial innovation? How does digital transformation affect green innovation in industrial enterprises?," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-32, February.
    9. Guo, Bingnan & Wang, Yu & Zhang, Hao & Liang, Chunyan & Feng, Yu & Hu, Feng, 2023. "Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities," Economic Modelling, Elsevier, vol. 120(C).
    10. Yang Liu & Yanlin Yang & Huihui Li & Kaiyang Zhong, 2022. "Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    11. Nils Grashof & Alexander Kopka, 2023. "Widening or closing the gap? The relationship between artificial intelligence, firm-level productivity and regional clusters," Bremen Papers on Economics & Innovation 2304, University of Bremen, Faculty of Business Studies and Economics.
    12. Zhao, Xiaoyang & Weng, Zongyuan, 2024. "Digital dividend or divide: The digital economy and urban entrepreneurial activity," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    13. Guoge Yang & Feng Deng & Yifei Wang & Xianhong Xiang, 2022. "Digital Paradox: Platform Economy and High-Quality Economic Development—New Evidence from Provincial Panel Data in China," Sustainability, MDPI, vol. 14(4), pages 1-26, February.
    14. Zhiqiang Zhou & Wenyan Liu & Pengfei Cheng & Zhenjin Li, 2022. "The Impact of the Digital Economy on Enterprise Sustainable Development and Its Spatial-Temporal Evolution: An Empirical Analysis Based on Urban Panel Data in China," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    15. Junjun Tang & Xing Zhao, 2023. "Does the new digital infrastructure improve total factor productivity?," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 895-916, October.
    16. Suo, Xuekun & Zhang, Longting & Guo, Rong & Lin, Han & Yu, Mingchuan & Du, Xiuhong, 2024. "The inverted U-shaped association between digital economy and corporate total factor productivity: A knowledge-based perspective," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    17. Pan, Junyu & Cifuentes-Faura, Javier & Zhao, Xin & Liu, Xiaoqian, 2024. "Unlocking the impact of digital technology progress and entry dynamics on firm's total factor productivity in Chinese industries," Global Finance Journal, Elsevier, vol. 60(C).
    18. Xin Tan & Jinfang Jiao & Ming Jiang & Ming Chen & Wenpeng Wang & Yijun Sun, 2024. "Digital Policy, Green Innovation, and Digital-Intelligent Transformation of Companies," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    19. Wang, Bing & Liu, Yanyan & Yang, Xiangyu, 2024. "Digital economy and urban entrepreneurial activity," Finance Research Letters, Elsevier, vol. 66(C).
    20. Lei Wang & Provash Sarker & Kausar Alam & Shahneoaj Sumon, 2021. "Artificial Intelligence and Economic Growth: A Theoretical Framework," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 68(4), pages 421-443, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2619-:d:1462976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.