IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2613-d1462842.html
   My bibliography  Save this article

The Wiener Process with a Random Non-Monotone Hazard Rate-Based Drift

Author

Listed:
  • Luis Alberto Rodríguez-Picón

    (Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico)

  • Luis Carlos Méndez-González

    (Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico)

  • Luis Asunción Pérez-Domínguez

    (Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico)

  • Héctor Eduardo Tovanche-Picón

    (Department of Industrial Engineering and Manufacturing, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico)

Abstract

Several variations of stochastic processes have been studied in the literature to obtain reliability estimations of products and systems from degradation data. As the degradation trajectories may have different degradation rates, it is necessary to consider alternatives to characterize their individual behavior. Some stochastic processes have a constant drift parameter, which defines the mean rate of the degradation process. However, for some cases, the mean rate must not be considered as constant, which means that the rate varies in the different stages of the degradation process. This poses an opportunity to study alternative strategies that allow to model this variation in the drift. For this, we consider the Hjorth rate, which is a failure rate that can define different shapes depending on the values of its parameters. In this paper, the integration of this hazard rate with the Wiener process is studied to individually identify the degradation rate of multiple degradation trajectories. Random effects are considered in the model to estimate a parameter of the Hjorth rate for every degradation trajectory, which allows us to identify the type of rate. The reliability functions of the proposed model is obtained through numerical integration as the function results in a complex form. The proposed model is illustrated in two case studies based on a crack propagation and infrared LED datasets. It is found that the proposed approach has better performance for the reliability estimation of products based on information criteria.

Suggested Citation

  • Luis Alberto Rodríguez-Picón & Luis Carlos Méndez-González & Luis Asunción Pérez-Domínguez & Héctor Eduardo Tovanche-Picón, 2024. "The Wiener Process with a Random Non-Monotone Hazard Rate-Based Drift," Mathematics, MDPI, vol. 12(17), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2613-:d:1462842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimiliano Giorgio & Fabio Postiglione & Gianpaolo Pulcini, 2020. "Bayesian estimation and prediction for the transformed Wiener degradation process," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(4), pages 660-678, July.
    2. Peihua Jiang, 2022. "Statistical Inference of Wiener Constant-Stress Accelerated Degradation Model with Random Effects," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    3. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Li Sun & Fangchao Zhao & Narayanaswamy Balakrishnan & Honggen Zhou & Xiaohui Gu, 2021. "A nonlinear Wiener degradation model integrating degradation data under accelerated stresses and real operating environment," Journal of Risk and Reliability, , vol. 235(3), pages 356-373, June.
    5. Saberzadeh, Zahra & Razmkhah, Mostafa, 2022. "Reliability of degrading complex systems with two dependent components per element," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Duan, Fengjun & Wang, Guanjun, 2022. "Bayesian analysis for the transformed exponential dispersion process with random effects," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2613-:d:1462842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.