IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2581-d1460969.html
   My bibliography  Save this article

Forecasting and Multilevel Early Warning of Wind Speed Using an Adaptive Kernel Estimator and Optimized Gated Recurrent Units

Author

Listed:
  • Pengjiao Wang

    (School of Civil Engineering, Central South University, Changsha 410075, China)

  • Qiuliang Long

    (School of Civil Engineering, Central South University, Changsha 410075, China
    Hunan Harbor Engineering Corporation Limited, Changsha 410021, China)

  • Hu Zhang

    (Hunan Harbor Engineering Corporation Limited, Changsha 410021, China)

  • Xu Chen

    (Hunan Harbor Engineering Corporation Limited, Changsha 410021, China)

  • Ran Yu

    (Hunan Harbor Engineering Corporation Limited, Changsha 410021, China)

  • Fengqi Guo

    (School of Civil Engineering, Central South University, Changsha 410075, China)

Abstract

Accurately predicting wind speeds is of great significance in various engineering applications, such as the operation of high-speed trains. Machine learning models are effective in this field. However, existing studies generally provide deterministic predictions and utilize decomposition techniques in advance to enhance predictive performance, which may encounter data leakage and fail to capture the stochastic nature of wind data. This work proposes an advanced framework for the prediction and early warning of wind speeds by combining the optimized gated recurrent unit (GRU) and adaptive kernel density estimator (AKDE). Firstly, 12 samples (26,280 points each) were collected from an extensive open database. Three representative metaheuristic algorithms were then employed to optimize the parameters of diverse models, including extreme learning machines, a transformer model, and recurrent networks. The results yielded an optimal selection using the GRU and the crested porcupine optimizer. Afterwards, by using the AKDE, the joint probability density and cumulative distribution function of wind predictions and related predicting errors could be obtained. It was then applicable to calculate the conditional probability that actual wind speed exceeds the critical value, thereby providing probabilistic-based predictions in a multilevel manner. A comparison of the predictive performance of various methods and accuracy of subsequent decisions validated the proposed framework.

Suggested Citation

  • Pengjiao Wang & Qiuliang Long & Hu Zhang & Xu Chen & Ran Yu & Fengqi Guo, 2024. "Forecasting and Multilevel Early Warning of Wind Speed Using an Adaptive Kernel Estimator and Optimized Gated Recurrent Units," Mathematics, MDPI, vol. 12(16), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2581-:d:1460969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    2. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    3. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    4. Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
    5. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    6. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    3. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    4. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    5. Jiang, Ping & Wang, Yun & Wang, Jianzhou, 2017. "Short-term wind speed forecasting using a hybrid model," Energy, Elsevier, vol. 119(C), pages 561-577.
    6. Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
    7. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    8. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    9. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    10. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    11. Liu, Hui & Duan, Zhu & Li, Yanfei & Lu, Haibo, 2018. "A novel ensemble model of different mother wavelets for wind speed multi-step forecasting," Applied Energy, Elsevier, vol. 228(C), pages 1783-1800.
    12. Wang, Yun & Chen, Tuo & Zou, Runmin & Song, Dongran & Zhang, Fan & Zhang, Lingjun, 2022. "Ensemble probabilistic wind power forecasting with multi-scale features," Renewable Energy, Elsevier, vol. 201(P1), pages 734-751.
    13. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    14. Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.
    15. Wang, Yun & Wang, Haibo & Srinivasan, Dipti & Hu, Qinghua, 2019. "Robust functional regression for wind speed forecasting based on Sparse Bayesian learning," Renewable Energy, Elsevier, vol. 132(C), pages 43-60.
    16. Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
    17. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Lingjun & Zhang, Fan, 2022. "A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 196(C), pages 497-517.
    18. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    19. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    20. Luca Di Persio & Nicola Fraccarolo & Andrea Veronese, 2024. "Wind Energy Production in Italy: A Forecasting Approach Based on Fractional Brownian Motion and Generative Adversarial Networks," Mathematics, MDPI, vol. 12(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2581-:d:1460969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.