IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2544-d1458415.html
   My bibliography  Save this article

An Inventory Service-Level Optimization Problem for a Multi-Warehouse Supply Chain Network with Stochastic Demands

Author

Listed:
  • Roberto León

    (Departamento de Informática, Universidad Técnica Federico Santa María, Santiago 8940897, Chile)

  • Pablo A. Miranda-Gonzalez

    (Departamento de Ingeniería Industrial, Universidad Católica del Norte, Antofagasta 1270709, Chile)

  • Francisco J. Tapia-Ubeda

    (Departamento de Ingeniería Industrial, Universidad Católica del Norte, Antofagasta 1270709, Chile)

  • Elias Olivares-Benitez

    (Facultad de Ingeniería, Universidad Panamericana, Zapopan 45010, Jalisco, Mexico)

Abstract

This research aims to develop a mathematical model and a solution approach for jointly optimizing a global inventory service level and order sizes for a single-commodity supply chain network with multiple warehouses or distribution centers. The latter face stochastic demands, such as most real-world supply chains do nowadays, yielding significant model complexity. The studied problem is of high relevance for inventory management, inventory location, and supply chain network design-related literature, as well as for logistics and supply chain managers. The proposed optimization model minimizes the total costs associated with cycle inventory, safety stock, and stock-out-related events, considering a global inventory service level and differentiated order sizes for a fixed and known set of warehouses. Subsequently, the model is solved by employing the Newton–Raphson algorithm, which is developed and implemented assuming stochastic demands with a normal approximation. The algorithm reached optimality conditions and the convergence criterion in a few iterations, within less than a second, for a variety of real-world sized instances involving up to 200 warehouses. The model solutions are contrasted with those obtained with a previous widely employed approximation, where safety stock costs were further approximated and order sizes were optimized without considering stock-out-related costs. This comparison denotes valuable benefits without significant additional computational efforts. Thus, the proposed approach is suitable for managers of real-world supply chains, since they would be able to attain system performance improvements by simultaneously optimizing the global inventory service level and order sizes, thereby providing a better system cost equilibrium.

Suggested Citation

  • Roberto León & Pablo A. Miranda-Gonzalez & Francisco J. Tapia-Ubeda & Elias Olivares-Benitez, 2024. "An Inventory Service-Level Optimization Problem for a Multi-Warehouse Supply Chain Network with Stochastic Demands," Mathematics, MDPI, vol. 12(16), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2544-:d:1458415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nozick, Linda K. & Turnquist, Mark A., 2001. "A two-echelon inventory allocation and distribution center location analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(6), pages 425-441, December.
    2. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    3. Abdel-Malek, Layek & Montanari, Roberto & Meneghetti, Diego, 2008. "The capacitated newsboy problem with random yield: The Gardener Problem," International Journal of Production Economics, Elsevier, vol. 115(1), pages 113-127, September.
    4. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    5. Tapia-Ubeda, Francisco J. & Miranda, Pablo A. & Macchi, Marco, 2018. "A Generalized Benders Decomposition based algorithm for an inventory location problem with stochastic inventory capacity constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 806-817.
    6. Nozick, Linda K. & Turnquist, Mark A., 1998. "Integrating inventory impacts into a fixed-charge model for locating distribution centers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(3), pages 173-186, September.
    7. Escalona, P. & Ordóñez, F. & Marianov, V., 2015. "Joint location-inventory problem with differentiated service levels using critical level policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 141-157.
    8. Zuo-Jun Max Shen & Collette Coullard & Mark S. Daskin, 2003. "A Joint Location-Inventory Model," Transportation Science, INFORMS, vol. 37(1), pages 40-55, February.
    9. Ahmadi Javid, Amir & Azad, Nader, 2010. "Incorporating location, routing and inventory decisions in supply chain network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 582-597, September.
    10. Francisco J. Tapia-Ubeda & Pablo A. Miranda & Irene Roda & Marco Macchi & Orlando Durán, 2020. "Modelling and solving spare parts supply chain network design problems," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5299-5319, September.
    11. Mark Daskin & Collette Coullard & Zuo-Jun Shen, 2002. "An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results," Annals of Operations Research, Springer, vol. 110(1), pages 83-106, February.
    12. Dai, Zhuo & Aqlan, Faisal & Gao, Kuo, 2017. "Optimizing multi-echelon inventory with three types of demand in supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 141-177.
    13. Miranda, Pablo A. & Garrido, Rodrigo A., 2009. "Inventory service-level optimization within distribution network design problem," International Journal of Production Economics, Elsevier, vol. 122(1), pages 276-285, November.
    14. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    15. Claudio Araya-Sassi & Pablo A. Miranda & Germán Paredes-Belmar, 2018. "Lagrangian Relaxation for an Inventory Location Problem with Periodic Inventory Control and Stochastic Capacity Constraints," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-27, October.
    16. Miranda, Pablo A. & Garrido, Rodrigo A., 2004. "Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 183-207, May.
    17. Lin Chen & Ting Dong & Jin Peng & Dan Ralescu, 2023. "Uncertainty Analysis and Optimization Modeling with Application to Supply Chain Management: A Systematic Review," Mathematics, MDPI, vol. 11(11), pages 1-45, May.
    18. Guoling Zhou & Yueting Yang & Mingyuan Cao & Shaojian Qu, 2022. "A New Spectral Three-Term Conjugate Gradient Method with Random Parameter Based on Modified Secant Equation and Its Application to Low-Carbon Supply Chain Optimization," Journal of Mathematics, Hindawi, vol. 2022, pages 1-15, October.
    19. Markus Ettl & Gerald E. Feigin & Grace Y. Lin & David D. Yao, 2000. "A Supply Network Model with Base-Stock Control and Service Requirements," Operations Research, INFORMS, vol. 48(2), pages 216-232, April.
    20. Kun-Jen Chung & Jui-Jung Liao & Shy-Der Lin & Sheng-Tu Chuang & Hari Mohan Srivastava, 2019. "The Inventory Model for Deteriorating Items under Conditions Involving Cash Discount and Trade Credit," Mathematics, MDPI, vol. 7(7), pages 1-20, July.
    21. Reza Zanjirani Farahani & Hannaneh Rashidi Bajgan & Behnam Fahimnia & Mohamadreza Kaviani, 2015. "Location-inventory problem in supply chains: a modelling review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(12), pages 3769-3788, June.
    22. Gérard P. Cachon, 2001. "Exact Evaluation of Batch-Ordering Inventory Policies in Two-Echelon Supply Chains with Periodic Review," Operations Research, INFORMS, vol. 49(1), pages 79-98, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darmawan, Agus & Wong, Hartanto & Thorstenson, Anders, 2021. "Supply chain network design with coordinated inventory control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    2. Aaron Guerrero Campanur & Elias Olivares-Benitez & Pablo A. Miranda & Rodolfo Eleazar Perez-Loaiza & Jose Humberto Ablanedo-Rosas, 2018. "Design of a Logistics Nonlinear System for a Complex, Multiechelon, Supply Chain Network with Uncertain Demands," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    3. Schuster Puga, Matías & Tancrez, Jean-Sébastien, 2017. "A heuristic algorithm for solving large location–inventory problems with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 259(2), pages 413-423.
    4. Miranda, Pablo A. & Garrido, Rodrigo A., 2009. "Inventory service-level optimization within distribution network design problem," International Journal of Production Economics, Elsevier, vol. 122(1), pages 276-285, November.
    5. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    6. Escalona, P. & Marianov, V. & Ordóñez, F. & Stegmaier, R., 2018. "On the effect of inventory policies on distribution network design with several demand classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 229-240.
    7. Tapia-Ubeda, Francisco J. & Miranda, Pablo A. & Macchi, Marco, 2018. "A Generalized Benders Decomposition based algorithm for an inventory location problem with stochastic inventory capacity constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 806-817.
    8. Pablo Miranda & Rodrigo Garrido, 2006. "A Simultaneous Inventory Control and Facility Location Model with Stochastic Capacity Constraints," Networks and Spatial Economics, Springer, vol. 6(1), pages 39-53, March.
    9. Burcu B. Keskin & Halit Üster, 2012. "Production/distribution system design with inventory considerations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(2), pages 172-195, March.
    10. Zheng, Xiaojin & Yin, Meixia & Zhang, Yanxia, 2019. "Integrated optimization of location, inventory and routing in supply chain network design," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 1-20.
    11. Tancrez, Jean-Sébastien & Lange, Jean-Charles & Semal, Pierre, 2012. "A location-inventory model for large three-level supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 485-502.
    12. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    13. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    14. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    15. Fathi, Mahdi & Khakifirooz, Marzieh & Diabat, Ali & Chen, Huangen, 2021. "An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network," International Journal of Production Economics, Elsevier, vol. 237(C).
    16. Joy Chang & Miao Yu & Siqian Shen & Ming Xu, 2017. "Location Design and Relocation of a Mixed Car-Sharing Fleet with a CO 2 Emission Constraint," Service Science, INFORMS, vol. 9(3), pages 205-218, September.
    17. Emilio Carrizosa & Alba V. Olivares-Nadal & Pepa Ramírez-Cobo, 2020. "Embedding the production policy in location-allocation decisions," 4OR, Springer, vol. 18(3), pages 357-380, September.
    18. Shu, Jia & Li, Zhengyi & Shen, Houcai & Wu, Ting & Zhong, Weijun, 2012. "A logistics network design model with vendor managed inventory," International Journal of Production Economics, Elsevier, vol. 135(2), pages 754-761.
    19. Tsao, Yu-Chung & Lu, Jye-Chyi, 2012. "A supply chain network design considering transportation cost discounts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 401-414.
    20. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2015. "A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 238-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2544-:d:1458415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.