IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2089-d1428292.html
   My bibliography  Save this article

Image Feature Extraction Using Symbolic Data of Cumulative Distribution Functions

Author

Listed:
  • Sri Winarni

    (Department of Statistics, Universitas Padjadjaran, Jl. Raya Bandung Sumedang km 21 Jatinangor, Sumedang 45363, Indonesia)

  • Sapto Wahyu Indratno

    (Statistics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia)

  • Restu Arisanti

    (Department of Statistics, Universitas Padjadjaran, Jl. Raya Bandung Sumedang km 21 Jatinangor, Sumedang 45363, Indonesia)

  • Resa Septiani Pontoh

    (Department of Statistics, Universitas Padjadjaran, Jl. Raya Bandung Sumedang km 21 Jatinangor, Sumedang 45363, Indonesia)

Abstract

Symbolic data analysis is an emerging field in statistics with great potential to become a standard inferential technique. This research introduces a new approach to image feature extraction using the empirical cumulative distribution function (ECDF) and distribution function of distribution values (DFDV) as symbolic data. The main objective is to reduce the dimension of huge pixel data by organizing them into more coherent pixel-intensity distributions. We propose a partitioning method with different breakpoints to capture pixel intensity variations effectively. This results in an ECDF representing the proportion of pixel intensities and a DFDV representing the probability distribution at specific points. The novelty of this approach lies in using ECDF and DFDV as symbolic features, thus summarizing the data and providing a more informative representation of the pixel value distribution, facilitating image classification analysis based on intensity distribution. The experimental results underscore the potential of this method in distinguishing image characteristics among existing image classes. Image features extracted using this approach promise image classification analysis with more informative image representations. In addition, theoretical insights into the properties of DFDV distribution functions are gained.

Suggested Citation

  • Sri Winarni & Sapto Wahyu Indratno & Restu Arisanti & Resa Septiani Pontoh, 2024. "Image Feature Extraction Using Symbolic Data of Cumulative Distribution Functions," Mathematics, MDPI, vol. 12(13), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2089-:d:1428292
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    2. M. Vrac & L. Billard & E. Diday & A. Chédin, 2012. "Copula analysis of mixture models," Computational Statistics, Springer, vol. 27(3), pages 427-457, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drago, Carlo, 2015. "Exploring the Community Structure of Complex Networks," MPRA Paper 81024, University Library of Munich, Germany.
    2. Philip Hans Franses & Max Welz, 2022. "Evaluating heterogeneous forecasts for vintages of macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 829-839, July.
    3. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    4. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
    5. Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
    6. Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.
    7. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    8. António Silva & Paula Brito, 2006. "Linear discriminant analysis for interval data," Computational Statistics, Springer, vol. 21(2), pages 289-308, June.
    9. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    10. Carlo Drago, 2021. "The Analysis and the Measurement of Poverty: An Interval-Based Composite Indicator Approach," Economies, MDPI, vol. 9(4), pages 1-17, October.
    11. A. Silva & Paula Brito, 2015. "Discriminant Analysis of Interval Data: An Assessment of Parametric and Distance-Based Approaches," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 516-541, October.
    12. Lin, Wei & González-Rivera, Gloria, 2016. "Interval-valued time series models: Estimation based on order statistics exploring the Agriculture Marketing Service data," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 694-711.
    13. Guo, Junpeng & Li, Wenhua & Li, Chenhua & Gao, Sa, 2012. "Standardization of interval symbolic data based on the empirical descriptive statistics," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 602-610.
    14. Qing Zhao & Huiwen Wang & Shanshan Wang, 2023. "Robust regression for interval-valued data based on midpoints and log-ranges," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 583-621, September.
    15. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    16. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    17. Babel Raïssa Guemdjo Kamdem & Jules Sadefo-Kamdem & Carlos Ougouyandjou, 2020. "On Random Extended Intervals and their ARMA Processes," Working Papers hal-03169516, HAL.
    18. Antonio Calcagnì & Luigi Lombardi & Lorenzo Avanzi & Eduardo Pascali, 2020. "Multiple mediation analysis for interval-valued data," Statistical Papers, Springer, vol. 61(1), pages 347-369, February.
    19. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
    20. Arroyo, Javier & Maté, Carlos, 2009. "Forecasting histogram time series with k-nearest neighbours methods," International Journal of Forecasting, Elsevier, vol. 25(1), pages 192-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2089-:d:1428292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.