IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p1921-d1419358.html
   My bibliography  Save this article

A Fuzzy Entropy Approach for Portfolio Selection

Author

Listed:
  • Milena Bonacic

    (Universidad de Los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago 7620086, Chile)

  • Héctor López-Ospina

    (Universidad de Los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago 7620086, Chile)

  • Cristián Bravo

    (University of Western Ontario, London, ON N6A 5B7, Canada)

  • Juan Pérez

    (Universidad de Los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago 7620086, Chile)

Abstract

Portfolio management typically aims to achieve better returns per unit of risk by building efficient portfolios. The Markowitz framework is the classic approach used when decision-makers know the expected returns and covariance matrix of assets. However, the theory does not always apply when the time horizon of investments is short; the realized return and covariance of different assets are usually far from the expected values, and considering additional factors, such as diversification and information ambiguity, can lead to better portfolios. This study proposes models for constructing efficient portfolios using fuzzy parameters like entropy, return, variance, and entropy membership functions in multi-criteria optimization models. Our approach leverages aspects related to multi-criteria optimization and Shannon entropy to deal with diversification, and fuzzy and fuzzy entropy variants provide a better representation of the ambiguity of the information according to the investors’ deadline. We compare 418 optimal portfolios for different objectives (return, variance, and entropy), using data from 2003 to 2023 of indexes from the USA, EU, China, and Japan. We use the Sharpe index as a decision variable, in addition to the multi-criteria decision analysis method TOPSIS. Our models provided high-efficiency portfolios, particularly those considering fuzzy entropy membership functions for return and variance.

Suggested Citation

  • Milena Bonacic & Héctor López-Ospina & Cristián Bravo & Juan Pérez, 2024. "A Fuzzy Entropy Approach for Portfolio Selection," Mathematics, MDPI, vol. 12(13), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1921-:d:1419358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/1921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/1921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    2. Tanaka, Hideo & Guo, Peijun, 1999. "Portfolio selection based on upper and lower exponential possibility distributions," European Journal of Operational Research, Elsevier, vol. 114(1), pages 115-126, April.
    3. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    4. Andrés García Medina & Rodrigo Macías Páez, 2023. "Rotationally invariant estimators on portfolio optimization to unveil financial risk’s states," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 34(09), pages 1-19, September.
    5. Munki Chung & Yongjae Lee & Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2022. "The effects of errors in means, variances, and correlations on the mean-variance framework," Quantitative Finance, Taylor & Francis Journals, vol. 22(10), pages 1893-1903, October.
    6. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    7. Clara Calvo & Carlos Ivorra & Vicente Liern, 2012. "On the Computation of the Efficient Frontier of the Portfolio Selection Problem," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Weilong & Zhang, Yong & Liu, Kailong & Quinn, Barry & Yang, Xingyu & Peng, Qiao, 2023. "Evolutionary multi-objective optimisation for large-scale portfolio selection with both random and uncertain returns," QBS Working Paper Series 2023/02, Queen's University Belfast, Queen's Business School.
    2. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    3. Kuen-Suan Chen & Ruey-Chyn Tsaur & Nei-Chih Lin, 2022. "Dimensions Analysis to Excess Investment in Fuzzy Portfolio Model from the Threshold of Guaranteed Return Rates," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    4. Ravi Kashyap, 2024. "The Blockchain Risk Parity Line: Moving From The Efficient Frontier To The Final Frontier Of Investments," Papers 2407.09536, arXiv.org.
    5. Wu, Xu & Zhang, Linlin & Li, Jia & Yan, Ruzhen, 2021. "Fractal statistical measure and portfolio model optimization under power-law distribution," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    6. Longsheng Cheng & Mahboubeh Shadabfar & Arash Sioofy Khoojine, 2023. "A State-of-the-Art Review of Probabilistic Portfolio Management for Future Stock Markets," Mathematics, MDPI, vol. 11(5), pages 1-34, February.
    7. Chen, Wei, 2015. "Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 125-139.
    8. Paul Ormerod, 2010. "La crisis actual y la culpabilidad de la teoría macroeconómica," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 12(22), pages 111-128, January-J.
    9. Zhao, Zhibiao & Wu, Wei Biao, 2009. "Nonparametric inference of discretely sampled stable Lévy processes," Journal of Econometrics, Elsevier, vol. 153(1), pages 83-92, November.
    10. Alessia Naccarato & Andrea Pierini & Giovanna Ferraro, 2021. "Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment," Annals of Operations Research, Springer, vol. 299(1), pages 81-99, April.
    11. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    12. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    13. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    14. Ben Klemens, 2013. "A Peer-based Model of Fat-tailed Outcomes," Papers 1304.0718, arXiv.org.
    15. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    16. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    17. Rodríguez, Mª Araceli, 2005. "Nueva Evidencia Empírica sobre las Turbulencias Cambiarias de la Peseta Española. 1989-1998/New Evidence about Turbulences on the Spanish Peseta. 1989-1998s," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 23, pages 207-230, Abril.
    18. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
    19. Geluk, J.L. & De Vries, C.G., 2006. "Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 39-56, February.
    20. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1921-:d:1419358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.