IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1842-d1414351.html
   My bibliography  Save this article

On a Mixed Transient–Asymptotic Result for the Sequential Interval Reliability for Semi-Markov Chains

Author

Listed:
  • Guglielmo D’Amico

    (Department of Economics, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy
    These authors contributed equally to this work.)

  • Thomas Gkelsinis

    (Laboratory of Mathematics Raphaël Salem, University of Rouen-Normandy, UMR 6085, 76801 Saint-Étienne-du-Rouvray, France
    These authors contributed equally to this work.)

Abstract

In this paper, we are concerned with the study of sequential interval reliability, a measure recently introduced in the literature. This measure represents the probability of the system working during a sequence of nonoverlapping time intervals. In the cited work, the authors proposed a recurrent-type formula for computing this indicator in the transient case and investigated the asymptotic behavior as all the time intervals go to infinity. The purpose of the present work is to further explore the asymptotic behavior when only some of the time intervals are allowed to go to infinity while the remaining ones are not. In this way, we provide a unique indicator that is able to describe the process evolution in the transient and asymptotic cases as well. It is important to mention that this is not a straightforward result since, in order to achieve it, we need to develop several mathematical ingredients that generalize the classical renewal and Markov renewal frameworks. A numerical example illustrates our theoretical results.

Suggested Citation

  • Guglielmo D’Amico & Thomas Gkelsinis, 2024. "On a Mixed Transient–Asymptotic Result for the Sequential Interval Reliability for Semi-Markov Chains," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1842-:d:1414351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moura, Márcio das Chagas & Droguett, Enrique López, 2009. "Mathematical formulation and numerical treatment based on transition frequency densities and quadrature methods for non-homogeneous semi-Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 342-349.
    2. Vlad Stefan Barbu & Guglielmo D’Amico & Thomas Gkelsinis, 2021. "Sequential Interval Reliability for Discrete-Time Homogeneous Semi-Markov Repairable Systems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    3. Guglielmo D’Amico & Raimondo Manca & Filippo Petroni & Dharmaraja Selvamuthu, 2021. "On the Computation of Some Interval Reliability Indicators for Semi-Markov Systems," Mathematics, MDPI, vol. 9(5), pages 1-23, March.
    4. Bei Wu & Brenda Ivette Garcia Maya & Nikolaos Limnios, 2021. "Using Semi-Markov Chains to Solve Semi-Markov Processes," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1419-1431, December.
    5. P.-C.G. Vassiliou & Andreas C. Georgiou, 2021. "Markov and Semi-Markov Chains, Processes, Systems, and Emerging Related Fields," Mathematics, MDPI, vol. 9(19), pages 1-6, October.
    6. Samis Trevezas & Nikolaos Limnios, 2011. "Exact MLE and asymptotic properties for nonparametric semi-Markov models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 719-739.
    7. D’Amico, Guglielmo & Petroni, Filippo, 2023. "ROCOF of higher order for semi-Markov processes," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    8. Guglielmo D’Amico & Jacques Janssen & Raimondo Manca, 2016. "Downward migration credit risk problem: a non-homogeneous backward semi-Markov reliability approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(3), pages 393-401, March.
    9. Guglielmo D’Amico & Jacques Janssen & Raimondo Manca, 2010. "Initial and Final Backward and Forward Discrete Time Non-homogeneous Semi-Markov Credit Risk Models," Methodology and Computing in Applied Probability, Springer, vol. 12(2), pages 215-225, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlad Stefan Barbu & Guglielmo D’Amico & Thomas Gkelsinis, 2021. "Sequential Interval Reliability for Discrete-Time Homogeneous Semi-Markov Repairable Systems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    2. P.-C.G. Vassiliou, 2020. "Non-Homogeneous Semi-Markov and Markov Renewal Processes and Change of Measure in Credit Risk," Mathematics, MDPI, vol. 9(1), pages 1-27, December.
    3. Puneet Pasricha & Dharmaraja Selvamuthu & Guglielmo D’Amico & Raimondo Manca, 2020. "Portfolio optimization of credit risky bonds: a semi-Markov process approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    4. Guglielmo D'Amico & Ada Lika & Filippo Petroni, 2019. "Risk Management of Pension Fund: A Model for Salary Evolution," IJFS, MDPI, vol. 7(3), pages 1-17, August.
    5. Puneet Pasricha & Dharmaraja Selvamuthu, 2021. "A Markov regenerative process with recurrence time and its application," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-22, December.
    6. Fanping Wei & Jingjing Wang & Xiaobing Ma & Li Yang & Qingan Qiu, 2023. "An Optimal Opportunistic Maintenance Planning Integrating Discrete- and Continuous-State Information," Mathematics, MDPI, vol. 11(15), pages 1-19, July.
    7. Hunt, Julien & Devolder, Pierre, 2011. "Semi Markov regime switching interest rate models and minimal entropy measure," LIDAM Discussion Papers ISBA 2011010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Cindy Frascolla & Guillaume Lecuelle & Pascal Schlich & Hervé Cardot, 2022. "Two sample tests for Semi-Markov processes with parametric sojourn time distributions: an application in sensory analysis," Computational Statistics, Springer, vol. 37(5), pages 2553-2580, November.
    9. Guglielmo D’Amico, 2013. "A semi-Markov approach to the stock valuation problem," Annals of Finance, Springer, vol. 9(4), pages 589-610, November.
    10. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    12. Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
    13. Hunt, Julien & Devolder, Pierre, 2011. "Semi-Markov regime switching interest rate models and minimal entropy measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3767-3781.
    14. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    15. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    16. D’Amico, Guglielmo & Gismondi, Fulvio & Petroni, Filippo & Prattico, Flavio, 2019. "Stock market daily volatility and information measures of predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 22-29.
    17. Marius Pfeuffer & Goncalo dos Reis & Greig smith, 2018. "Capturing Model Risk and Rating Momentum in the Estimation of Probabilities of Default and Credit Rating Migrations," Papers 1809.09889, arXiv.org, revised Feb 2020.
    18. Guglielmo D’Amico & Jacques Janssen & Raimondo Manca, 2011. "Discrete Time Non-Homogeneous Semi-Markov Reliability Transition Credit Risk Models and the Default Distribution Functions," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 465-481, November.
    19. Riccardo De Blasis, 2020. "The price leadership share: a new measure of price discovery in financial markets," Annals of Finance, Springer, vol. 16(3), pages 381-405, September.
    20. Guglielmo D’Amico & Raimondo Manca & Filippo Petroni & Dharmaraja Selvamuthu, 2021. "On the Computation of Some Interval Reliability Indicators for Semi-Markov Systems," Mathematics, MDPI, vol. 9(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1842-:d:1414351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.