IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1591-d1397764.html
   My bibliography  Save this article

Uncertainty Analysis of Aircraft Center of Gravity Deviation and Passenger Seat Allocation Optimization

Author

Listed:
  • Xiangling Zhao

    (Air Traffic Management Institute, Civil Aviation University of China, Tianjin 300300, China)

  • Wenheng Xiao

    (Air Traffic Management Institute, Civil Aviation University of China, Tianjin 300300, China)

Abstract

The traditional method of allocating passenger seats based on compartments does not effectively manage an aircraft’s center of gravity (CG), resulting in a notable divergence from the desired target CG (TCG). In this work, the Boeing B737-800 aircraft was employed as a case study, and row-based and compartment-based integer programming models for passenger allocation were examined and constructed with the aim of addressing the current situation. The accuracy of CG control was evaluated by comparing the row-based and compartment-based allocation techniques, taking into account different bodyweights and numbers of passengers. The key contribution of this research is to broaden the range of the mobilizable set for the aviation weight and balance (AWB) model, resulting in a significant reduction in the range of deviations in the center of gravity outcomes by a factor of around 6 to 16. The effectiveness of the row-based allocation approach and the impact of passenger weight randomness on the deviation of an airplane’s CG were also investigated in this study. The Monte Carlo method was utilized to quantify the uncertainty associated with passenger weight, resulting in the generation of the posterior distribution of the aircraft’s center of gravity (CG) deviation. The outcome of the row-based model test is the determination of the range of passenger numbers that can be effectively allocated under different TCG conditions.

Suggested Citation

  • Xiangling Zhao & Wenheng Xiao, 2024. "Uncertainty Analysis of Aircraft Center of Gravity Deviation and Passenger Seat Allocation Optimization," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1591-:d:1397764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wai Hung Wong & Anming Zhang & Yer Van Hui & Lawrence C. Leung, 2009. "Optimal Baggage-Limit Policy: Airline Passenger and Cargo Allocation," Transportation Science, INFORMS, vol. 43(3), pages 355-369, August.
    2. Crainic, Teodor Gabriel & Perboli, Guido & Rei, Walter & Rosano, Mariangela & Lerma, Veronica, 2024. "Capacity planning with uncertainty on contract fulfillment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 152-175.
    3. Jordi Castro & Fernando Sarachaga, 2021. "An online optimization-based procedure for the assignment of airplane seats," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 204-247, April.
    4. Kurt R. Heidelberg & Gregory S. Parnell & James E. Ames, 1998. "Automated air load planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(8), pages 751-768, December.
    5. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    6. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You-Shyang Chen & Ying-Hsun Hung & Mike Yau-Jung Lee & Jieh-Ren Chang & Chien-Ku Lin & Tai-Wen Wang, 2024. "Advanced Study: Improving the Quality of Cooling Water Towers’ Conductivity Using a Fuzzy PID Control Model," Mathematics, MDPI, vol. 12(20), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangling Zhao & Yun Dong & Lei Zuo, 2023. "A Combinatorial Optimization Approach for Air Cargo Palletization and Aircraft Loading," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    2. Simon Emde & Hamid Abedinnia & Anne Lange & Christoph H. Glock, 2020. "Scheduling personnel for the build-up of unit load devices at an air cargo terminal with limited space," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 397-426, June.
    3. Pranav Nair & Vinay Vakharia & Himanshu Borade & Milind Shah & Vishal Wankhede, 2023. "Predicting Li-Ion Battery Remaining Useful Life: An XDFM-Driven Approach with Explainable AI," Energies, MDPI, vol. 16(15), pages 1-19, July.
    4. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    5. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    6. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    7. Brandt, Felix & Nickel, Stefan, 2019. "The air cargo load planning problem - a consolidated problem definition and literature review on related problems," European Journal of Operational Research, Elsevier, vol. 275(2), pages 399-410.
    8. Zhao, Fei & Li, Yalou & Zhou, Xiaoxin & Wang, Dandan & Wei, Yawei & Li, Fang, 2023. "Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing," Applied Energy, Elsevier, vol. 341(C).
    9. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).
    10. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Giovanniello, Michael Anthony & Wu, Xiao-Yu, 2023. "Hybrid lithium-ion battery and hydrogen energy storage systems for a wind-supplied microgrid," Applied Energy, Elsevier, vol. 345(C).
    12. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    13. Erdem Agbas & Ali Osman Kusakci, 2021. "A simulation approach for aircraft cargo loading considering weight and balance constraints," International Journal of Business Ecosystem & Strategy (2687-2293), Bussecon International Academy, vol. 3(1), pages 21-31, January.
    14. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    15. Alice Vasconcelos Nobre & Caio Cézar Rodrigues Oliveira & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Gil Eduardo Guimarães & Rosley Anholon & Vitor William Batista Martins, 2022. "Analysis of Decision Parameters for Route Plans and Their Importance for Sustainability: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(2), pages 1-12, May.
    16. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Yuen, Andrew & Zhang, Anming & Hui, Yer Van & Leung, Lawrence C. & Fung, Michael, 2017. "Is developing air cargo airports in the hinterland the way of the future?," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 15-25.
    18. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    19. Lo, Winnie Wai Ling & Wan, Yulai & Zhang, Anming, 2015. "Empirical estimation of price and income elasticities of air cargo demand: The case of Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 309-324.
    20. Jacek Ryczyński & Artur Kierzkowski & Anna Jodejko-Pietruczuk, 2024. "Air Cargo Handling System Assessment Model: A Hybrid Approach Based on Reliability Theory and Fuzzy Logic," Sustainability, MDPI, vol. 16(23), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1591-:d:1397764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.