IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1588-d1397613.html
   My bibliography  Save this article

Persistence and Stochastic Extinction in a Lotka–Volterra Predator–Prey Stochastically Perturbed Model

Author

Listed:
  • Leonid Shaikhet

    (Department of Mathematics, Ariel University, Ariel 40700, Israel)

  • Andrei Korobeinikov

    (School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China)

Abstract

The classical Lotka–Volterra predator–prey model is globally stable and uniformly persistent. However, in real-life biosystems, the extinction of species due to stochastic effects is possible and may occur if the magnitudes of the stochastic effects are large enough. In this paper, we consider the classical Lotka–Volterra predator–prey model under stochastic perturbations. For this model, using an analytical technique based on the direct Lyapunov method and a development of the ideas of R.Z. Khasminskii, we find the precise sufficient conditions for the stochastic extinction of one and both species and, thus, the precise necessary conditions for the stochastic system’s persistence. The stochastic extinction occurs via a process known as the stabilization by noise of the Khasminskii type. Therefore, in order to establish the sufficient conditions for extinction, we found the conditions for this stabilization. The analytical results are illustrated by numerical simulations.

Suggested Citation

  • Leonid Shaikhet & Andrei Korobeinikov, 2024. "Persistence and Stochastic Extinction in a Lotka–Volterra Predator–Prey Stochastically Perturbed Model," Mathematics, MDPI, vol. 12(10), pages 1-8, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1588-:d:1397613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rudnicki, Ryszard, 2003. "Long-time behaviour of a stochastic prey-predator model," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 93-107, November.
    2. Vadillo, Fernando, 2019. "Comparing stochastic Lotka–Volterra predator-prey models," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 181-189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiumei & Jiang, Daqing, 2021. "Dynamics of stochastic predator-prey systems with continuous time delay," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Zhao, Xin & Liu, Lidan & Liu, Meng & Fan, Meng, 2024. "Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    4. Huang, Zaitang, 2017. "Positive recurrent of stochastic coral reefs model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 751-761.
    5. Fu, Xiaoming, 2019. "On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1008-1023.
    6. Guo, Xiaoxia & Zhu, Chunjuan & Ruan, Dehao, 2019. "Dynamic behaviors of a predator–prey model perturbed by a complex type of noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1024-1037.
    7. Ji, Chunyan & Jiang, Daqing & Lei, Dongxia, 2019. "Dynamical behavior of a one predator and two independent preys system with stochastic perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 649-664.
    8. Settati, A. & Lahrouz, A. & Zahri, M. & Tridane, A. & El Fatini, M. & El Mahjour, H. & Seaid, M., 2021. "A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamical behavior of a stochastic SVIR epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 94-108.
    10. Yang, Jiangtao, 2020. "Threshold behavior in a stochastic predator–prey model with general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    11. Liu, Qun & Jiang, Daqing & He, Xiuli & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a stochastic predator–prey model with distributed delay and general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 273-287.
    12. Cao, Boqiang & Shan, Meijing & Zhang, Qimin & Wang, Weiming, 2017. "A stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 127-143.
    13. Vadillo, Fernando, 2019. "Comparing stochastic Lotka–Volterra predator-prey models," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 181-189.
    14. Zuo, Wenjie & Jiang, Daqing & Sun, Xinguo & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 542-559.
    15. El Fatini, Mohamed & El Khalifi, Mohamed & Gerlach, Richard & Laaribi, Aziz & Taki, Regragui, 2019. "Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    16. Wen, Buyu & Rifhat, Ramziya & Teng, Zhidong, 2019. "The stationary distribution in a stochastic SIS epidemic model with general nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 258-271.
    17. Sun, Xinguo & Zuo, Wenjie & Jiang, Daqing & Hayat, Tasawar, 2018. "Unique stationary distribution and ergodicity of a stochastic Logistic model with distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 864-881.
    18. Wang, Lei & Gao, Chunjie & Rifhat, Ramziya & Wang, Kai & Teng, Zhidong, 2024. "Stationary distribution and bifurcation analysis for a stochastic SIS model with nonlinear incidence and degenerate diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    19. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 767-777.
    20. Tuerxun, Nafeisha & Wen, Buyu & Teng, Zhidong, 2021. "The stationary distribution in a class of stochastic SIRS epidemic models with non-monotonic incidence and degenerate diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 888-912.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1588-:d:1397613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.