IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2023i1p132-d1311064.html
   My bibliography  Save this article

Optimal Control of SLBRS with Recovery Rates

Author

Listed:
  • Xiangqing Zhao

    (Department of Mathematics, Suqian University, Suqian 223800, China)

  • Wanmei Hou

    (School of Marxism, Suqian University, Suqian 223800, China)

Abstract

In the information age, frequent information exchange has provided a breeding ground for the spread of computer viruses. The significant losses caused by computer virus attacks have long rung the alarm for information security. From academia to businesses, and even to government, everyone remains highly vigilant about information security. Researchers have put forward various approaches to combat computer viruses, involving innovative efforts in both the hardware and software aspects, as well as theoretical innovation and practical exploration. This article is dedicated to theoretical exploration, specifically investigating the stability of a computer virus model, known as SLBRS, from the perspective of optimal control. Firstly, a control system is introduced with the aim of minimizing the costs related to network detoxification and diminishing the percentage of computers impacted by the virus. Secondly, we employ the Pontryagin maximum principle to analyze the optimality of a control strategy for the proposed system. Thirdly, we validate the effectiveness of our theoretical analysis through numerical simulation. In conclusion, both theoretical analysis and numerical simulation reveal that the utilization of optimal control analysis to stabilize the SLBRS has been demonstrated to be advantageous in restoring contaminated computer network environments.

Suggested Citation

  • Xiangqing Zhao & Wanmei Hou, 2023. "Optimal Control of SLBRS with Recovery Rates," Mathematics, MDPI, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:132-:d:1311064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/1/132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/1/132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangqing Zhao, 2023. "Optimal Control Strategy for SLBRS with Two Control Inputs," Mathematics, MDPI, vol. 11(19), pages 1-10, September.
    2. Zhang, Chunming & Huang, Haitao, 2016. "Optimal control strategy for a novel computer virus propagation model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 251-265.
    3. Chen, Lijuan & Hattaf, Khalid & Sun, Jitao, 2015. "Optimal control of a delayed SLBS computer virus model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 244-250.
    4. Yong Tang & Lang Zhou & Jiahui Tang & Yue Rao & Hongguang Fan & Jihong Zhu, 2023. "Hybrid Impulsive Pinning Control for Mean Square Synchronization of Uncertain Multi-Link Complex Networks with Stochastic Characteristics and Hybrid Delays," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zizhen Zhang & Soumen Kundu & Ruibin Wei, 2019. "A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    2. Zhang, Xulong & Gan, Chenquan, 2018. "Global attractivity and optimal dynamic countermeasure of a virus propagation model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1004-1018.
    3. Yang, Wenbin & Li, Danqing & Chang, Xin, 2024. "Analysis and numerical simulation of computer virus propagation model based on limited resources," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 494-508.
    4. Liliana Eva Donath & Gabriela Mircea & Mihaela Neamțu & Grațiela Georgiana Noja & Nicoleta Sîrghi, 2024. "The Effect of Network Delay and Contagion on Mobile Banking Users: A Dynamical Analysis," Mathematics, MDPI, vol. 12(22), pages 1-22, November.
    5. Yi, Yinxue & Zhang, Zufan & Gan, Chenquan, 2018. "The effect of social tie on information diffusion in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 783-794.
    6. Wu, Yingbo & Li, Pengdeng & Yang, Lu-Xing & Yang, Xiaofan & Tang, Yuan Yan, 2017. "A theoretical method for assessing disruptive computer viruses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 325-336.
    7. Sun, Ruoyan, 2016. "Optimal weight based on energy imbalance and utility maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 429-435.
    8. Linhe Zhu & Hongyong Zhao, 2017. "Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2064-2078, July.
    9. Lv, Xijian & Fan, Dongmei & Yang, Junxian & Li, Qiang & Zhou, Li, 2024. "Delay differential equation modeling of social contagion with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    10. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    11. Chen, Shanshan & Jiang, Haijun & Li, Liang & Li, Jiarong, 2020. "Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Yang, Lu-Xing & Draief, Moez & Yang, Xiaofan, 2016. "The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 403-415.
    13. Jose Diamantino Hernández Guillén & Ángel Martín del Rey & Roberto Casado Vara, 2020. "On the Optimal Control of a Malware Propagation Model," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    14. Guiyun Liu & Zhimin Peng & Zhongwei Liang & Xiaojing Zhong & Xinhai Xia, 2022. "Analysis and Control of Malware Mutation Model in Wireless Rechargeable Sensor Network with Charging Delay," Mathematics, MDPI, vol. 10(14), pages 1-28, July.
    15. Zhang, Tianrui & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2017. "Dynamic malware containment under an epidemic model with alert," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 249-260.
    16. Qing Yang & Xiaojing Wang & Xiwang Cheng & Bo Du & Yuxiao Zhao, 2023. "Positive Periodic Solution for Neutral-Type Integral Differential Equation Arising in Epidemic Model," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    17. Liu, Zhiguang & Zhu, Quanxin, 2023. "Ultimate boundedness of impulsive stochastic delay differential equations with delayed impulses," Statistics & Probability Letters, Elsevier, vol. 199(C).
    18. Xiangqing Zhao, 2023. "Optimal Control Strategy for SLBRS with Two Control Inputs," Mathematics, MDPI, vol. 11(19), pages 1-10, September.
    19. Xing, Xiaofei & Wu, Huaiqin & Cao, Jinde, 2024. "Finite-time synchronization of impulsive stochastic systems with DoS attacks via dynamic event-triggered control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 573-593.
    20. Zhao Li & Chen Peng, 2023. "Dynamics and Embedded Solitons of Stochastic Quadratic and Cubic Nonlinear Susceptibilities with Multiplicative White Noise in the Itô Sense," Mathematics, MDPI, vol. 11(14), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:132-:d:1311064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.