IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v219y2024icp573-593.html
   My bibliography  Save this article

Finite-time synchronization of impulsive stochastic systems with DoS attacks via dynamic event-triggered control

Author

Listed:
  • Xing, Xiaofei
  • Wu, Huaiqin
  • Cao, Jinde

Abstract

This paper is concerned with the finite-time synchronization (FTS) issue for stochastic complex networks (SCNs) with/without time-delay under impulsive effects subject to denial of service (DoS) attacks. Firstly, a novel distributed dynamic event-triggered controller (DETC) is designed to realize the FTS for SCNs without delays, and the FTS conditions are addressed in the form of the algebraic inequalities. The Zeno behavior can be excluded for the proposed dynamic event-triggered mechanism (DETM). Secondly, a new feedback controller is designed to achieve the FTS for SCNs with time-varying delay. In addition, by applying Lyapunov stability theory and stochastic analysis technology, the FTS conditions are derived. Finally, two numerical examples are provided to illustrate the feasibility of the designed control strategies and the correctness of the stated theoretical results.

Suggested Citation

  • Xing, Xiaofei & Wu, Huaiqin & Cao, Jinde, 2024. "Finite-time synchronization of impulsive stochastic systems with DoS attacks via dynamic event-triggered control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 573-593.
  • Handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:573-593
    DOI: 10.1016/j.matcom.2023.12.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423005487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.12.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Sathishkumar & Yen-Chen Liu, 2022. "Resilient adaptive event-triggered dissipative control for networked control systems with DoS attacks," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(7), pages 1562-1578, May.
    2. Quanyu Bai & Wei Zhu, 2022. "Event-Triggered Impulsive Optimal Control for Continuous-Time Dynamic Systems with Input Time-Delay," Mathematics, MDPI, vol. 10(2), pages 1-16, January.
    3. Li, Xinna & Wu, Huaiqin & Cao, Jinde, 2023. "Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 647-668.
    4. Yong Tang & Lang Zhou & Jiahui Tang & Yue Rao & Hongguang Fan & Jihong Zhu, 2023. "Hybrid Impulsive Pinning Control for Mean Square Synchronization of Uncertain Multi-Link Complex Networks with Stochastic Characteristics and Hybrid Delays," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    5. Feng, Jianwen & Yang, Pan & Zhao, Yi, 2016. "Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 52-68.
    6. Zheng, Bibo & Wang, Zhanshan, 2022. "Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    2. Chenglong Zhu & Li He & Kanjian Zhang & Wei Sun & Zengxiang He, 2022. "Optimal Timing Fault Tolerant Control for Switched Stochastic Systems with Switched Drift Fault," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    3. Jianbao Zhang & Yi Wang & Zhongjun Ma & Jianlong Qiu & Fawaz Alsaadi, 2018. "Intermittent Control for Cluster-Delay Synchronization in Directed Networks," Complexity, Hindawi, vol. 2018, pages 1-9, February.
    4. Yi, Chengbo & Feng, Jianwen & Wang, Jingyi & Xu, Chen & Zhao, Yi, 2017. "Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 78-90.
    5. Li, Jiarong & Jiang, Haijun & Hu, Cheng & Yu, Juan, 2018. "Analysis and discontinuous control for finite-time synchronization of delayed complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 291-305.
    6. Liu, Yan & Yu, Pinrui & Chu, Dianhui & Su, Huan, 2019. "Stationary distribution of stochastic Markov jump coupled systems based on graph theory," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 188-195.
    7. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    8. Xu, Yao & Chu, Chenyin & Li, Wenxue, 2018. "Quantized feedback control scheme on coupled systems with time delay and distributed delay: A finite-time inner synchronization analysis," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 315-328.
    9. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    10. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    11. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    12. Gao, Zifan & Zhang, Dawei & Zhu, Shuqian, 2023. "Hybrid event-triggered synchronization control of delayed chaotic neural networks against communication delay and random data loss," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. Wang, Shasha & Jian, Jigui, 2023. "Predefined-time synchronization of incommensurate fractional-order competitive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Yang, Huilan & Wang, Xin & Zhong, Shouming & Shu, Lan, 2018. "Synchronization of nonlinear complex dynamical systems via delayed impulsive distributed control," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 75-85.
    15. Zhang, Chunmei & Yang, Yinghui, 2020. "Synchronization of stochastic multi-weighted complex networks with Lévy noise based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Qing Yang & Xiaojing Wang & Xiwang Cheng & Bo Du & Yuxiao Zhao, 2023. "Positive Periodic Solution for Neutral-Type Integral Differential Equation Arising in Epidemic Model," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    17. Liu, Zhiguang & Zhu, Quanxin, 2023. "Ultimate boundedness of impulsive stochastic delay differential equations with delayed impulses," Statistics & Probability Letters, Elsevier, vol. 199(C).
    18. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    19. Ruofeng Rao & Zhi Lin & Xiaoquan Ai & Jiarui Wu, 2022. "Synchronization of Epidemic Systems with Neumann Boundary Value under Delayed Impulse," Mathematics, MDPI, vol. 10(12), pages 1-10, June.
    20. Zhou, Jiaying & Zhao, Yi & Wu, ZhaoYan, 2019. "Cluster synchronization of fractional-order directed networks via intermittent pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 22-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:573-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.