IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2206-d1141536.html
   My bibliography  Save this article

On Targeted Control over Trajectories of Dynamical Systems Arising in Models of Complex Networks

Author

Listed:
  • Diana Ogorelova

    (Department of Natural Sciences and Mathematics, Daugavpils University, LV-5401 Daugavpils, Latvia)

  • Felix Sadyrbaev

    (Institute of Mathematics and Computer Science, University of Latvia, LV-1459 Riga, Latvia)

  • Inna Samuilik

    (Department of Engineering Mathematics, Riga Technical University, LV-1048 Riga, Latvia)

Abstract

The question of targeted control over trajectories of systems of differential equations encountered in the theory of genetic and neural networks is considered. Examples are given of transferring trajectories corresponding to network states from the basin of attraction of one attractor to the basin of attraction of the target attractor. This article considers a system of ordinary differential equations that arises in the theory of gene networks. Each trajectory describes the current and future states of the network. The question of the possibility of reorienting a given trajectory from the initial state to the assigned attractor is considered. This implies an only partial control of the network. The difficulty lies in the selection of parameters, the change of which leads to the goal. Similar problems arise when modeling the response of the body’s gene networks to serious diseases (e.g., leukemia). Solving such problems is the first step in the process of applying mathematical methods in medicine and pharmacology.

Suggested Citation

  • Diana Ogorelova & Felix Sadyrbaev & Inna Samuilik, 2023. "On Targeted Control over Trajectories of Dynamical Systems Arising in Models of Complex Networks," Mathematics, MDPI, vol. 11(9), pages 1-14, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2206-:d:1141536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nima Dehmamy & Soodabeh Milanlouei & Albert-László Barabási, 2018. "A structural transition in physical networks," Nature, Nature, vol. 563(7733), pages 676-680, November.
    2. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Kozlovska & Felix Sadyrbaev & Inna Samuilik, 2023. "A New 3D Chaotic Attractor in Gene Regulatory Network," Mathematics, MDPI, vol. 12(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    2. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    3. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    4. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    5. Gábor Pete & Ádám Timár & Sigurdur Örn Stefánsson & Ivan Bonamassa & Márton Pósfai, 2024. "Physical networks as network-of-networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    7. Bo Zhang & Jianping Yuan & J. F. Pan & Xiaoyu Wu & Jianjun Luo & Li Qiu, 2017. "Global Feedback Control for Coordinated Linear Switched Reluctance Machines Network with Full-State Observation and Internal Model Compensation," Energies, MDPI, vol. 10(12), pages 1-19, December.
    8. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    10. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    11. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    12. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    13. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    14. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    15. Zabka, Philipp & Förster, Klaus-T. & Decker, Christian & Schmid, Stefan, 2024. "A centrality analysis of the Lightning Network," Telecommunications Policy, Elsevier, vol. 48(2).
    16. Neil Johnson & Guannan Zhao & Eric Hunsader & Jing Meng & Amith Ravindar & Spencer Carran & Brian Tivnan, 2012. "Financial black swans driven by ultrafast machine ecology," Papers 1202.1448, arXiv.org.
    17. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    18. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    19. Csaba Both & Nima Dehmamy & Rose Yu & Albert-László Barabási, 2023. "Accelerating network layouts using graph neural networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Badhwar, Rahul & Bagler, Ganesh, 2017. "A distance constrained synaptic plasticity model of C. elegans neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 313-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2206-:d:1141536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.