IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2122-d1137123.html
   My bibliography  Save this article

Grey-Black Optical Solitons, Homoclinic Breather, Combined Solitons via Chupin Liu’s Theorem for Improved Perturbed NLSE with Dual-Power Law Nonlinearity

Author

Listed:
  • Syed T. R. Rizvi

    (Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54840, Pakistan)

  • Aly R. Seadawy

    (Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia)

  • Shami A. M. Alsallami

    (Department of Mathematical Sciences, College of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia)

Abstract

In this article, we consider the improved perturbed nonlinear Schrödinger Equation (IP-NLSE) with dual power law nonlinearity, which arises in optical fibers and photovoltaic-photo-refractive materials. We found grey and black optical solitons of the governing equation by means of a suitable complex envelope ansatz solution. By using the Chupin Liu’s theorem (CLT) for the grey and black solitons, we evaluated new categories of combined optical soliton (COS) solutions to the IP-NLSE. The propagation behaviors for homoclinic breathers (HB), multiwaves and M -shape solitons will be analytically examined. All new analytical solutions will be found by an ansatz function scheme and suitable transformations. Multiwave solitons have been reported by using a three-waves technique. Furthermore, two kinds of interactions for M -shape soliton through exponential functions will be examined.

Suggested Citation

  • Syed T. R. Rizvi & Aly R. Seadawy & Shami A. M. Alsallami, 2023. "Grey-Black Optical Solitons, Homoclinic Breather, Combined Solitons via Chupin Liu’s Theorem for Improved Perturbed NLSE with Dual-Power Law Nonlinearity," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2122-:d:1137123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz, 2022. "Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Seadawy, Aly R. & Cheemaa, Nadia, 2019. "Propagation of nonlinear complex waves for the coupled nonlinear Schrödinger Equations in two core optical fibers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
    3. Shami A. M. Alsallami & Syed T. R. Rizvi & Aly R. Seadawy, 2023. "Study of Stochastic–Fractional Drinfel’d–Sokolov–Wilson Equation for M-Shaped Rational, Homoclinic Breather, Periodic and Kink-Cross Rational Solutions," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    4. Helal, M.A. & Mehanna, M.S., 2007. "A comparative study between two different methods for solving the general Korteweg–de Vries equation (GKdV)," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 725-739.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Appanah Rao Appadu & Abey Sherif Kelil, 2020. "On Semi-Analytical Solutions for Linearized Dispersive KdV Equations," Mathematics, MDPI, vol. 8(10), pages 1-34, October.
    3. Kengne, Emmanuel, 2024. "Comment on “Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation”," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Simbawa, Eman & Seadawy, Aly R. & Sugati, Taghreed G., 2021. "Dispersive wave propagation of the nonlinear Sasa-Satsuma dynamical system with computational and analytical soliton solutions," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Seadawy, Aly R. & Rizvi, Syed T.R. & Sohail, Muhammad & Ali, Kashif, 2022. "Nonlinear model under anomalous dispersion regime: Chirped periodic and solitary waves," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    6. Abdulmohsen D. Alruwaili & Aly R. Seadawy & Syed T. R. Rizvi & Sid Ahmed O. Beinane, 2022. "Diverse Multiple Lump Analytical Solutions for Ion Sound and Langmuir Waves," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    7. Aly R. Seadawy & Hanadi Zahed & Mujahid Iqbal, 2022. "Solitary Wave Solutions for the Higher Dimensional Jimo-Miwa Dynamical Equation via New Mathematical Techniques," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    8. Bashir, Azhar & Seadawy, Aly R. & Ahmed, Sarfaraz & Rizvi, Syed T.R., 2022. "The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    9. Rasool Shah & Hassan Khan & Poom Kumam & Muhammad Arif, 2019. "An Analytical Technique to Solve the System of Nonlinear Fractional Partial Differential Equations," Mathematics, MDPI, vol. 7(6), pages 1-16, June.
    10. Taghread Ghannam Alharbi & Abdulghani Alharbi, 2023. "A Study of Traveling Wave Structures and Numerical Investigations into the Coupled Nonlinear Schrödinger Equation Using Advanced Mathematical Techniques," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    11. Imtiaz Ahmad & Muhammad Ahsan & Zaheer-ud Din & Ahmad Masood & Poom Kumam, 2019. "An Efficient Local Formulation for Time–Dependent PDEs," Mathematics, MDPI, vol. 7(3), pages 1-18, February.
    12. Ahmad, Hijaz & Seadawy, Aly R. & Khan, Tufail A., 2020. "Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 13-23.
    13. Ali, Karmina K. & Yokus, Asıf & Seadawy, Aly R. & Yilmazer, Resat, 2022. "The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    14. Aly R. Seadawy & Syed T. R. Rizvi & Hanadi Zahed, 2023. "Lump-Type Solutions, Lump Solutions, and Mixed Rogue Waves for Coupled Nonlinear Generalized Zakharov Equations," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    15. Seadawy, Aly R. & Rizvi, Syed T.R. & Mustafa, B. & Ali, K. & Althubiti, Saeed, 2022. "Chirped periodic waves for an cubic-quintic nonlinear Schrödinger equation with self steepening and higher order nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Kumar, Raj & Kumar, Avneesh, 2022. "Dynamical behavior of similarity solutions of CKOEs with conservation law," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    17. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz, 2022. "Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: Applications in nuclear reactor theory," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    18. Rizvi, Syed T.R. & Seadawy, Aly R. & Raza, Umar, 2022. "Some advanced chirped pulses for generalized mixed nonlinear Schrödinger dynamical equation," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    19. Cao, Na & Yin, XiaoJun & Bai, ShuTing & LiYangXu,, 2023. "Breather wave, lump type and interaction solutions for a high dimensional evolution model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz & Bashir, Azhar, 2022. "Lump solutions, Kuznetsov–Ma breathers, rogue waves and interaction solutions for magneto electro-elastic circular rod," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2122-:d:1137123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.