IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2120-d1136960.html
   My bibliography  Save this article

Global Stabilization of Delayed Feedback Financial System Involved in Advertisement under Impulsive Disturbance

Author

Listed:
  • Xinggui Li

    (Department of Mathematics, Chengdu Normal University, Chengdu 611130, China)

  • Xinsong Yang

    (College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Diffusion is an inevitable important factor in advertising dynamic systems. However, previous literature did not involve this important diffusion factor, and only involved the local stability of the advertising model. This paper develops a global stability criterion for the impulsive advertising dynamic model with a feedback term under the influence of diffusion. Since global stability requires the unique existence of equilibrium points, variational methods are employed to solve it in the infinite dimensional function space, and then a global stability criterion of the system is derived by way of the impulse inequality lemma and orthogonal decomposition of a class of Sobolev spaces. Numerical simulations verify the effectiveness of the proposed method.

Suggested Citation

  • Xinggui Li & Xinsong Yang, 2023. "Global Stabilization of Delayed Feedback Financial System Involved in Advertisement under Impulsive Disturbance," Mathematics, MDPI, vol. 11(9), pages 1-12, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2120-:d:1136960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Hongyong & Mao, Zisen, 2009. "Boundedness and stability of nonautonomous cellular neural networks with reaction-diffusion terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1603-1617.
    2. Luo, Yantao & Zhang, Long & Teng, Zhidong & Zheng, Tingting, 2021. "Analysis of a general multi-group reaction–diffusion epidemic model with nonlinear incidence and temporary acquired immunity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 428-455.
    3. M. Hymavathi & Tarek F. Ibrahim & M. Syed Ali & Gani Stamov & Ivanka Stamova & B. A. Younis & Khalid I. Osman, 2022. "Synchronization of Fractional-Order Neural Networks with Time Delays and Reaction-Diffusion Terms via Pinning Control," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    4. Ahmed M. Elaiw & Afnan D. Al Agha, 2022. "Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    2. Ahmed M. Elaiw & Aeshah A. Raezah & Matuka A. Alshaikh, 2023. "Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
    3. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny & Shaban A. Aly, 2023. "Global Dynamics of an HTLV-I and SARS-CoV-2 Co-Infection Model with Diffusion," Mathematics, MDPI, vol. 11(3), pages 1-33, January.
    5. Ali Algarni & Afnan D. Al Agha & Aisha Fayomi & Hakim Al Garalleh, 2023. "Kinetics of a Reaction-Diffusion Mtb/SARS-CoV-2 Coinfection Model with Immunity," Mathematics, MDPI, vol. 11(7), pages 1-25, April.
    6. Zhu, Linhe & Zheng, Wenxin & Shen, Shuling, 2023. "Dynamical analysis of a SI epidemic-like propagation model with non-smooth control," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Ahmed. M. Elaiw & Abdullah J. Alsaedi & Aatef. D. Hobiny & Shaban. A. Aly, 2022. "Global Properties of a Diffusive SARS-CoV-2 Infection Model with Antibody and Cytotoxic T-Lymphocyte Immune Responses," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    8. Noura H. AlShamrani & Ahmed Elaiw & Aeshah A. Raezah & Khalid Hattaf, 2023. "Global Dynamics of a Diffusive Within-Host HTLV/HIV Co-Infection Model with Latency," Mathematics, MDPI, vol. 11(6), pages 1-47, March.
    9. Yi Liang & Yunyun Deng & Chuan Zhang, 2023. "Outer Synchronization of Two Muti-Layer Dynamical Complex Networks with Intermittent Pinning Control," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
    10. Long, Shujun & Wang, Xiaohu & Li, Dingshi, 2012. "Attracting and invariant sets of non-autonomous reaction-diffusion neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2199-2214.
    11. Bing Li & Ziye Xiang, 2023. "Evolutionary Game of Vaccination Considering Both Epidemic and Economic Factors by Infectious Network of Complex Nodes," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    12. Noura H. AlShamrani & Reham H. Halawani & Wafa Shammakh & Ahmed M. Elaiw, 2023. "Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread," Mathematics, MDPI, vol. 11(17), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2120-:d:1136960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.