IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2011-d1131190.html
   My bibliography  Save this article

Attention-Based Residual Dilated Network for Traffic Accident Prediction

Author

Listed:
  • Ke Zhang

    (Department of Civil Engineering, Tsinghua University, Beijing 100080, China)

  • Yaming Guo

    (Department of Civil Engineering, Tsinghua University, Beijing 100080, China)

Abstract

Traffic accidents directly influence public safety and economic development; thus, the prevention of traffic accidents is of great importance in urban transportation. The accurate prediction of traffic accidents can assist traffic departments to better control and prevent accidents. Thus, this paper proposes a deep learning method named attention-based residual dilated network (ARDN), to extract essential information from multi-source datasets and enhance accident prediction accuracy. The method utilizes bidirectional long short-term memory to model sequential information and incorporates an attention mechanism to recalibrate weights. Furthermore, a dilated residual layer is adopted to capture long term information effectively. Feature encoding is also employed to incorporate natural language descriptions and point-of-interest data. Experimental evaluations of datasets collected from Austin and Houston demonstrate that ARDN outperforms a range of machine learning methods, such as logistic regression, gradient boosting, Xgboost, and deep learning methods. The ablation experiments further confirm the indispensability of each component in the proposed method.

Suggested Citation

  • Ke Zhang & Yaming Guo, 2023. "Attention-Based Residual Dilated Network for Traffic Accident Prediction," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2011-:d:1131190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang Zong & Hongguo Xu & Huiyong Zhang, 2013. "Prediction for Traffic Accident Severity: Comparing the Bayesian Network and Regression Models," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, October.
    2. Marjana Čubranić-Dobrodolac & Libor Švadlenka & Svetlana Čičević & Aleksandar Trifunović & Momčilo Dobrodolac, 2020. "Using the Interval Type-2 Fuzzy Inference Systems to Compare the Impact of Speed and Space Perception on the Occurrence of Road Traffic Accidents," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    3. Alessandro Crivellari & Euro Beinat, 2020. "Forecasting Spatially-Distributed Urban Traffic Volumes via Multi-Target LSTM-Based Neural Network Regressor," Mathematics, MDPI, vol. 8(12), pages 1-16, December.
    4. Khaled Assi & Syed Masiur Rahman & Umer Mansoor & Nedal Ratrout, 2020. "Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol," IJERPH, MDPI, vol. 17(15), pages 1-17, July.
    5. Shihao Zhao & Shuli Xing & Guojun Mao, 2022. "An Attention and Wavelet Based Spatial-Temporal Graph Neural Network for Traffic Flow and Speed Prediction," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaled Assi, 2020. "Traffic Crash Severity Prediction—A Synergy by Hybrid Principal Component Analysis and Machine Learning Models," IJERPH, MDPI, vol. 17(20), pages 1-16, October.
    2. Sherif Shokry & Naglaa K. Rashwan & Seham Hemdan & Ali Alrashidi & Amr M. Wahaballa, 2023. "Characterization of Traffic Accidents Based on Long-Horizon Aggregated and Disaggregated Data," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    3. Sheng Dong & Afaq Khattak & Irfan Ullah & Jibiao Zhou & Arshad Hussain, 2022. "Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations," IJERPH, MDPI, vol. 19(5), pages 1-23, March.
    4. Wachiranun Sirikul & Nida Buawangpong & Ratana Sapbamrer & Penprapa Siviroj, 2021. "Mortality-Risk Prediction Model from Road-Traffic Injury in Drunk Drivers: Machine Learning Approach," IJERPH, MDPI, vol. 18(19), pages 1-14, October.
    5. Rachel Aldred & Susana García-Herrero & Esther Anaya & Sixto Herrera & Miguel Ángel Mariscal, 2019. "Cyclist Injury Severity in Spain: A Bayesian Analysis of Police Road Injury Data Focusing on Involved Vehicles and Route Environment," IJERPH, MDPI, vol. 17(1), pages 1-16, December.
    6. Anton Agafonov & Alexander Yumaganov & Vladislav Myasnikov, 2023. "Cooperative Control for Signalized Intersections in Intelligent Connected Vehicle Environments," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    7. Mireille Megnidio-Tchoukouegno & Jacob Adedayo Adedeji, 2023. "Machine Learning for Road Traffic Accident Improvement and Environmental Resource Management in the Transportation Sector," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    8. Khaled Assi & Syed Masiur Rahman & Umer Mansoor & Nedal Ratrout, 2020. "Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol," IJERPH, MDPI, vol. 17(15), pages 1-17, July.
    9. Marjana Čubranić-Dobrodolac & Stefan Jovčić & Sara Bošković & Darko Babić, 2023. "A Decision-Making Model for Professional Drivers Selection: A Hybridized Fuzzy–AROMAN–Fuller Approach," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    10. Syed As-Sadeq Tahfim & Yan Chen, 2022. "A Cluster-Based Approach for Analysis of Injury Severity in Interstate Crashes Involving Large Trucks," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    11. Huajing Ning & Yunyan Yu & Lu Bai, 2022. "Unsafe Behaviors Analysis of Sideswipe Collision on Urban Expressways Based on Bayesian Network," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    12. Wang, Bowen & Wang, Jingsheng, 2022. "ST-MGAT:Spatio-temporal multi-head graph attention network for Traffic prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2011-:d:1131190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.