IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1317-d1091925.html
   My bibliography  Save this article

Scalar Variance and Scalar Correlation for Functional Data

Author

Listed:
  • Cristhian Leonardo Urbano-Leon

    (Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Manuel Escabias

    (Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Diana Paola Ovalle-Muñoz

    (Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Javier Olaya-Ochoa

    (School of Statistics, University of Valle, Cali 760042, Colombia
    These authors contributed equally to this work.)

Abstract

In Functional Data Analysis (FDA), the existing summary statistics so far are elements in the Hilbert space L 2 of square-integrable functions. These elements do not constitute an ordered set; therefore, they are not sufficient to solve problems related to comparability such as obtaining a correlation measurement or comparing the variability between two sets of curves, determining the efficiency and consistency of a functional estimator, among other things. Consequently, we present an approach of coherent redefinition of some common summary statistics such as sample variance, sample covariance and correlation in Functional Data Analysis (FDA). Regarding variance, covariance and correlation between functional data, our summary statistics lead to numbers instead of functions which is helpful for solving the aforementioned problems. Furthermore, we briefly discuss the functional forms coherence of some statistics already present in the FDA. We formally enumerate and demonstrate some properties of our functional summary statistics. Then, a simulation study is presented briefly, with evidence of the consistency of the proposed variance. Finally, we present the implementation of our statistics through two application examples.

Suggested Citation

  • Cristhian Leonardo Urbano-Leon & Manuel Escabias & Diana Paola Ovalle-Muñoz & Javier Olaya-Ochoa, 2023. "Scalar Variance and Scalar Correlation for Functional Data," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1317-:d:1091925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Th. Gasser & P. Hall & B. Presnell, 1998. "Nonparametric estimation of the mode of a distribution of random curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 681-691.
    2. Aguilera, Ana M. & Acal, Christian & Aguilera-Morillo, M. Carmen & Jiménez-Molinos, Francisco & Roldán, Juan B., 2021. "Homogeneity problem for basis expansion of functional data with applications to resistive memories," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 41-51.
    3. J. Ramsay, 1982. "When the data are functions," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 379-396, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    2. Zhenjie Liang & Futian Weng & Yuanting Ma & Yan Xu & Miao Zhu & Cai Yang, 2022. "Measurement and Analysis of High Frequency Assert Volatility Based on Functional Data Analysis," Mathematics, MDPI, vol. 10(7), pages 1-11, April.
    3. Laib, Naâmane & Louani, Djamal, 2010. "Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2266-2281, November.
    4. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    5. Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
    6. Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
    7. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    8. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Jia Guo & Shiyan Ma & Xiang Li, 2022. "Exploring the Differences of Sustainable Urban Development Levels from the Perspective of Multivariate Functional Data Analysis: A Case Study of 33 Cities in China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    10. Jianping Zhu & Futian Weng & Muni Zhuang & Xin Lu & Xu Tan & Songjie Lin & Ruoyi Zhang, 2022. "Revealing Public Opinion towards the COVID-19 Vaccine with Weibo Data in China: BertFDA-Based Model," IJERPH, MDPI, vol. 19(20), pages 1-26, October.
    11. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    12. Algimantas Birbilas & Alfredas Račkauskas, 2024. "Change-Point Detection in Functional First-Order Auto-Regressive Models," Mathematics, MDPI, vol. 12(12), pages 1-25, June.
    13. Li, Xuemei & Liu, Xiaoxing, 2023. "Functional classification and dynamic prediction of cumulative intraday returns in crude oil futures," Energy, Elsevier, vol. 284(C).
    14. Liu, Jicai & Zhang, Riquan & Zhao, Weihua & Lv, Yazhao, 2013. "A robust and efficient estimation method for single index models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 226-238.
    15. Xiaoling Wang & Hongling Yu & Peng Lv & Cheng Wang & Jun Zhang & Jia Yu, 2019. "Seepage Safety Assessment of Concrete Gravity Dam Based on Matter-Element Extension Model and FDA," Energies, MDPI, vol. 12(3), pages 1-21, February.
    16. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
    17. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    18. Huang, Su-Yun & Lu, Henry Horng-Shing, 2001. "Extended Gauss-Markov Theorem for Nonparametric Mixed-Effects Models," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 249-266, February.
    19. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    20. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1317-:d:1091925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.