IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1957-d1128823.html
   My bibliography  Save this article

Estimations of the Jensen Gap and Their Applications Based on 6-Convexity

Author

Listed:
  • Muhammad Adil Khan

    (Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan)

  • Asadullah Sohail

    (Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan)

  • Hidayat Ullah

    (Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan)

  • Tareq Saeed

    (Financial Mathematics and Actuarial Science (FMAS)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia)

Abstract

The main purpose of this manuscript is to present some new estimations of the Jensen gap in a discrete sense along with their applications. The proposed estimations for the Jensen gap are provided with the help of the notion of 6-convex functions. Some numerical experiments are performed to determine the significance and correctness of the intended estimates. Several outcomes of the main results are discussed for the Hölder inequality and the power and quasi-arithmetic means. Furthermore, some applications are presented in information theory, which provide some bounds for the divergences, Bhattacharyya coefficient, Shannon entropy, and Zipf–Mandelbrot entropy.

Suggested Citation

  • Muhammad Adil Khan & Asadullah Sohail & Hidayat Ullah & Tareq Saeed, 2023. "Estimations of the Jensen Gap and Their Applications Based on 6-Convexity," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1957-:d:1128823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mihai, Marcela V. & Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2015. "Some integral inequalities for harmonic h-convex functions involving hypergeometric functions," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 257-262.
    2. Yongping Deng & Hidayat Ullah & Muhammad Adil Khan & Sajid Iqbal & Shanhe Wu & Georgios Psarrakos, 2021. "Refinements of Jensen’s Inequality via Majorization Results with Applications in the Information Theory," Journal of Mathematics, Hindawi, vol. 2021, pages 1-12, August.
    3. repec:kap:iaecre:v:14:y:2008:i:4:p:433-440 is not listed on IDEAS
    4. Samih Azar, 2008. "Jensen’s Inequality in Finance," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 14(4), pages 433-440, November.
    5. E. A. Youness, 1999. "E-Convex Sets, E-Convex Functions, and E-Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 439-450, August.
    6. Muhammad Adil Khan & Hidayat Ullah & Tareq Saeed & Hamed H. Alsulami & Z. M. M. M. Sayed & Ahmed Mohammed Alshehri & Fahd Jarad, 2022. "Estimations of the Slater Gap via Convexity and Its Applications in Information Theory," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-21, July.
    7. S. S. Dragomir, 2012. "Some Slater's Type Inequalities for Convex Functions Defined on Linear Spaces and Applications," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-16, February.
    8. Hidayat Ullah & Muhammad Adil Khan & Tareq Saeed, 2021. "Determination of Bounds for the Jensen Gap and Its Applications," Mathematics, MDPI, vol. 9(23), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuexiao You & Muhammad Adil Khan & Hidayat Ullah & Tareq Saeed, 2022. "Improvements of Slater’s Inequality by Means of 4-Convexity and Its Applications," Mathematics, MDPI, vol. 10(8), pages 1-19, April.
    2. Shanhe Wu & Muhammad Adil Khan & Tareq Saeed & Zaid Mohammed Mohammed Mahdi Sayed, 2022. "A Refined Jensen Inequality Connected to an Arbitrary Positive Finite Sequence," Mathematics, MDPI, vol. 10(24), pages 1-10, December.
    3. Gustavo Santos-García & Muhammad Bilal Khan & Hleil Alrweili & Ahmad Aziz Alahmadi & Sherif S. M. Ghoneim, 2022. "Hermite–Hadamard and Pachpatte Type Inequalities for Coordinated Preinvex Fuzzy-Interval-Valued Functions Pertaining to a Fuzzy-Interval Double Integral Operator," Mathematics, MDPI, vol. 10(15), pages 1-25, August.
    4. Tadeusz Antczak & Najeeb Abdulaleem, 2023. "On the exactness and the convergence of the $$l_{1}$$ l 1 exact penalty E-function method for E-differentiable optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1331-1359, September.
    5. Muhammad Bilal Khan & Gustavo Santos-García & Hatim Ghazi Zaini & Savin Treanță & Mohamed S. Soliman, 2022. "Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus," Mathematics, MDPI, vol. 10(4), pages 1-26, February.
    6. D. I. Duca & L. Lupşa, 2006. "On the E-Epigraph of an E-Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 129(2), pages 341-348, May.
    7. Wei Liu & Fangfang Shi & Guoju Ye & Dafang Zhao, 2022. "The Properties of Harmonically cr - h -Convex Function and Its Applications," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    8. Asfand Fahad & Ayesha & Yuanheng Wang & Saad Ihsaan Butt, 2023. "Jensen–Mercer and Hermite–Hadamard–Mercer Type Inequalities for GA- h -Convex Functions and Its Subclasses with Applications," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    9. Akhlad Iqbal & Shahid Ali & I. Ahmad, 2012. "On Geodesic E-Convex Sets, Geodesic E-Convex Functions and E-Epigraphs," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 239-251, October.
    10. Wedad Saleh & Abdelghani Lakhdari & Ohud Almutairi & Adem Kiliçman, 2023. "Some Remarks on Local Fractional Integral Inequalities Involving Mittag–Leffler Kernel Using Generalized ( E , h )-Convexity," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    11. Muhammad Tariq & Soubhagya Kumar Sahoo & Sotiris K. Ntouyas & Omar Mutab Alsalami & Asif Ali Shaikh & Kamsing Nonlaopon, 2022. "Some New Mathematical Integral Inequalities Pertaining to Generalized Harmonic Convexity with Applications," Mathematics, MDPI, vol. 10(18), pages 1-21, September.
    12. Muhammad Bilal Khan & Hakeem A. Othman & Aleksandr Rakhmangulov & Mohamed S. Soliman & Alia M. Alzubaidi, 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    13. Dorel Duca & Liana Lupsa, 2012. "Saddle points for vector valued functions: existence, necessary and sufficient theorems," Journal of Global Optimization, Springer, vol. 53(3), pages 431-440, July.
    14. Fangfang Shi & Guoju Ye & Dafang Zhao & Wei Liu, 2020. "Some Fractional Hermite–Hadamard Type Inequalities for Interval-Valued Functions," Mathematics, MDPI, vol. 8(4), pages 1-10, April.
    15. Babli Kumari & Anurag Jayswal, 2018. "Some properties of geodesic E-preinvex function and geodesic semi E-preinvex function on Riemannian manifolds," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 807-822, November.
    16. Waqar Afzal & Alina Alb Lupaş & Khurram Shabbir, 2022. "Hermite–Hadamard and Jensen-Type Inequalities for Harmonical ( h 1 , h 2 )-Godunova–Levin Interval-Valued Functions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    17. Fulga, C. & Preda, V., 2009. "Nonlinear programming with E-preinvex and local E-preinvex functions," European Journal of Operational Research, Elsevier, vol. 192(3), pages 737-743, February.
    18. Dafang Zhao & Guohui Zhao & Guoju Ye & Wei Liu & Silvestru Sever Dragomir, 2021. "On Hermite–Hadamard-Type Inequalities for Coordinated h -Convex Interval-Valued Functions," Mathematics, MDPI, vol. 9(19), pages 1-14, September.
    19. Cristescu, Gabriela & Noor, Muhammad Aslam & Noor, Khalida Inayat & Awan, Muhammad Uzair, 2016. "Some inequalities for functions having Orlicz-convexity," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 226-236.
    20. Weerawat Sudsutad & Nantapat Jarasthitikulchai & Chatthai Thaiprayoon & Jutarat Kongson & Jehad Alzabut, 2022. "Novel Generalized Proportional Fractional Integral Inequalities on Probabilistic Random Variables and Their Applications," Mathematics, MDPI, vol. 10(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1957-:d:1128823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.