IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1846-d1122507.html
   My bibliography  Save this article

Hydraulic Data Preprocessing for Machine Learning-Based Intrusion Detection in Cyber-Physical Systems

Author

Listed:
  • Ignitious V. Mboweni

    (Department of Electrical Engineering, University of Cape Town, Cape Town 7700, South Africa)

  • Daniel T. Ramotsoela

    (Department of Electrical Engineering, University of Cape Town, Cape Town 7700, South Africa)

  • Adnan M. Abu-Mahfouz

    (Council for Scientific and Industrial Research, Pretoria 0184, South Africa)

Abstract

The protection of critical infrastructure such as water treatment and water distribution systems is crucial for a functioning economy. The use of cyber-physical systems in these systems presents numerous vulnerabilities to attackers. To enhance security, intrusion detection systems play a crucial role in limiting damage from successful attacks. Machine learning can enhance security by analysing data patterns, but several attributes of the data can negatively impact the performance of the machine learning model. Data in critical water system infrastructure can be difficult to work with due to their complexity, variability, irregularities, and sensitivity. The data involve various measurements and can vary over time due to changes in environmental conditions and operational changes. Irregular patterns and small changes can have significant impacts on analysis and decision making, requiring effective data preprocessing techniques to handle the complexities and ensure accurate analysis. This paper explores data preprocessing techniques using a water treatment system dataset as a case study and provides preprocessing techniques specific to processing data in industrial control to yield a more informative dataset. The results showed significant improvement in accuracy, F1 score, and time to detection when using the preprocessed dataset.

Suggested Citation

  • Ignitious V. Mboweni & Daniel T. Ramotsoela & Adnan M. Abu-Mahfouz, 2023. "Hydraulic Data Preprocessing for Machine Learning-Based Intrusion Detection in Cyber-Physical Systems," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1846-:d:1122507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashouri, Milad & Fung, Benjamin C.M. & Haghighat, Fariborz & Yoshino, Hiroshi, 2020. "Systematic approach to provide building occupants with feedback to reduce energy consumption," Energy, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohsen Ahmadi & Mahsa Soofiabadi & Maryam Nikpour & Hossein Naderi & Lazim Abdullah & Behdad Arandian, 2022. "Developing a Deep Neural Network with Fuzzy Wavelets and Integrating an Inline PSO to Predict Energy Consumption Patterns in Urban Buildings," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    2. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    3. Matteo Caldera & Asad Hussain & Sabrina Romano & Valerio Re, 2023. "Energy-Consumption Pattern-Detecting Technique for Household Appliances for Smart Home Platform," Energies, MDPI, vol. 16(2), pages 1-23, January.
    4. Zhiping Zhang & Hongye Qiu & Dantong Li & Zhilong He & Ziwen Xing & Lijian Wu, 2022. "Development of Ultra-High-Efficiency Medium-Capacity Chillers with Two-Stage Compression and Interstage Vapor Injection Technologies," Energies, MDPI, vol. 15(24), pages 1-19, December.
    5. Yuuki Nakano & Hiroki Hondo, 2023. "Narrative or Logical? The Effects of Information Format on Pro-Environmental Behavior," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    6. Feng, Chaoqing & Zhang, Lizhuang & Wang, Rui & Yang, Hongbin & Xu, Zhao & Yan, Suying, 2021. "Greenhouse cover plate with dimming and temperature control function," Energy, Elsevier, vol. 221(C).
    7. Gianmarco Fajilla & Marilena De Simone & Luisa F. Cabeza & Luís Bragança, 2020. "Assessment of the Impact of Occupants’ Behavior and Climate Change on Heating and Cooling Energy Needs of Buildings," Energies, MDPI, vol. 13(23), pages 1-18, December.
    8. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Integrating evidence-based thermal satisfaction in energy benchmarking: A data-driven approach for a whole-building evaluation," Energy, Elsevier, vol. 244(PB).
    9. Zhang, Guiqing & Tian, Chenlu & Li, Chengdong & Zhang, Jun Jason & Zuo, Wangda, 2020. "Accurate forecasting of building energy consumption via a novel ensembled deep learning method considering the cyclic feature," Energy, Elsevier, vol. 201(C).
    10. Zhang, Heng & Zhang, Shenxi & Hu, Xiao & Cheng, Haozhong & Gu, Qingfa & Du, Mengke, 2022. "Parametric optimization-based peer-to-peer energy trading among commercial buildings considering multiple energy conversion," Applied Energy, Elsevier, vol. 306(PB).
    11. Jorge Antunes & Rangan Gupta & Zinnia Mukherjee & Peter Wanke, 2022. "Information entropy, continuous improvement, and US energy performance: a novel stochastic-entropic analysis for ideal solutions (SEA-IS)," Annals of Operations Research, Springer, vol. 313(1), pages 289-318, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1846-:d:1122507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.