IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1626-d1109198.html
   My bibliography  Save this article

Resonance Analysis of Horizontal Nonlinear Vibrations of Roll Systems for Cold Rolling Mills under Double-Frequency Excitations

Author

Listed:
  • Li Jiang

    (School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
    College of Intelligent Manufacturing, Chengdu Technological University, Chengdu 611730, China)

  • Tao Wang

    (College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China)

  • Qing-Xue Huang

    (School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
    College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

In this paper, the fractional order differential terms are introduced into a horizontal nonlinear dynamics model of a cold mill roller system. The resonance characteristics of the roller system under high-frequency and low-frequency excitation signals are investigated. Firstly, the dynamical equation of the roller system with a fractional order is established by replacing the normal damping term with a fractional damping term. Secondly, the fast-slow variable separation method is introduced to solve the dynamical equation. The amplitude frequency response characteristics of the system are analyzed. The study finds that there are three equilibrium points. The characteristics of the three equilibrium points and the critical forces causing the bifurcation are investigated. Due to the different orders of the fractional derivatives, various new resonant phenomena are found in the systems with single-well and double-well potentials. Additionally, the double resonance occurs while p = 0.3 or 1.0, and single resonance occurs while p = 1.8. Unlike integer order systems, the critical resonance amplitude of high-frequency signals in fractional order systems depends on the damping strength and is influenced by the fractional order damping. This study provides a broader picture of the vibration characteristics of the roll system for rolling mills.

Suggested Citation

  • Li Jiang & Tao Wang & Qing-Xue Huang, 2023. "Resonance Analysis of Horizontal Nonlinear Vibrations of Roll Systems for Cold Rolling Mills under Double-Frequency Excitations," Mathematics, MDPI, vol. 11(7), pages 1-15, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1626-:d:1109198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hashemizadeh, E. & Ebrahimzadeh, A., 2018. "An efficient numerical scheme to solve fractional diffusion-wave and fractional Klein–Gordon equations in fluid mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1189-1203.
    2. Yan, Zhi & Wang, Wei & Liu, Xianbin, 2018. "Analysis of a quintic system with fractional damping in the presence of vibrational resonance," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 780-793.
    3. Dang, Rongqi & Chen, Yiming, 2021. "Fractional modelling and numerical simulations of variable-section viscoelastic arches," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. Yang, Yongge & Xu, Wei & Gu, Xudong & Sun, Yahui, 2015. "Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 190-204.
    5. Ghayesh, Mergen H. & Amabili, Marco & Farokhi, Hamed, 2013. "Two-dimensional nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 8-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Zhi & Wang, Wei & Liu, Xianbin, 2018. "Analysis of a quintic system with fractional damping in the presence of vibrational resonance," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 780-793.
    2. Ning, Xin & Ma, Yanyan & Li, Shuai & Zhang, Jingmin & Li, Yifei, 2018. "Response of non-linear oscillator driven by fractional derivative term under Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 102-107.
    3. Farokhi, Hamed & Ghayesh, Mergen H. & Amabili, Marco, 2013. "In-plane and out-of-plane nonlinear dynamics of an axially moving beam," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 101-121.
    4. Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
    5. Zheng, Bibo & Wang, Zhanshan, 2022. "Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Sun, Zhongkui & Dang, Puni & Xu, Wei, 2019. "Detecting and measuring stochastic resonance in fractional-order systems via statistical complexity," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 34-40.
    7. Guo, Feng & Wang, Xue-yuan & Qin, Ming-wei & Luo, Xiang-dong & Wang, Jian-wei, 2021. "Resonance phenomenon for a nonlinear system with fractional derivative subject to multiplicative and additive noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    8. Dai, Hongzhe & Zheng, Zhibao & Wang, Wei, 2017. "On generalized fractional vibration equation," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 48-51.
    9. Xie, Jiaquan & Zhao, Fuqiang & He, Dongping & Shi, Wei, 2022. "Bifurcation and resonance of fractional cubic nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Jin, Chen & Sun, Zhongkui & Xu, Wei, 2022. "Stochastic bifurcations and its regulation in a Rijke tube model," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1626-:d:1109198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.