IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1502-d1101917.html
   My bibliography  Save this article

Exact Permutation and Bootstrap Distribution of Generalized Pairwise Comparisons Statistics

Author

Listed:
  • William N. Anderson

    (Independent Researcher, Carpinteria, CA 93013, USA)

  • Johan Verbeeck

    (Data Science Institute, I-Biostat, University of Hasselt, 3590 Diepenbeek, Belgium)

Abstract

To analyze multivariate outcomes in clinical trials, several authors have suggested generalizations of the univariate Mann–Whitney test. As the Mann–Whitney statistic compares the subjects’ outcome pairwise, the multivariate generalizations are known as generalized pairwise comparisons (GPC) statistics. For GPC statistics such as the net treatment benefit, the win ratio, and the win odds, asymptotic based or re-sampling tests have been suggested in the literature. However, asymptotic methods require a sufficiently high sample size to be accurate, and re-sampling methods come with a high computational burden. We use graph theory notation to obtain closed-form formulas for the expectation and the variance of the permutation and bootstrap sampling distribution of the GPC statistics, which can be utilized to develop fast and accurate inferential tests for each of the GPC statistics. A simple example and a simulation study demonstrate the accuracy of the exact permutation and bootstrap methods, even in very small samples. As the time complexity is O ( N 2 ) , where N is the total number of patients, the exact methods are fast. In situations where asymptotic methods have been used to obtain these variance matrices, the new methods will be more accurate and equally fast. In situations where bootstrap has been used, the new methods will be both more accurate and much faster.

Suggested Citation

  • William N. Anderson & Johan Verbeeck, 2023. "Exact Permutation and Bootstrap Distribution of Generalized Pairwise Comparisons Statistics," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1502-:d:1101917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ritesh Ramchandani & David A. Schoenfeld & Dianne M. Finkelstein, 2016. "Global rank tests for multiple, possibly censored, outcomes," Biometrics, The International Biometric Society, vol. 72(3), pages 926-935, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Mao & KyungMann Kim & Xinran Miao, 2022. "Sample size formula for general win ratio analysis," Biometrics, The International Biometric Society, vol. 78(3), pages 1257-1268, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1502-:d:1101917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.