IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i3p926-935.html
   My bibliography  Save this article

Global rank tests for multiple, possibly censored, outcomes

Author

Listed:
  • Ritesh Ramchandani
  • David A. Schoenfeld
  • Dianne M. Finkelstein

Abstract

type="main" xml:lang="en"> Clinical trials often collect multiple outcomes on each patient, as the treatment may be expected to affect the patient on many dimensions. For example, a treatment for a neurological disease such as ALS is intended to impact several dimensions of neurological function as well as survival. The assessment of treatment on the basis of multiple outcomes is challenging, both in terms of selecting a test and interpreting the results. Several global tests have been proposed, and we provide a general approach to selecting and executing a global test. The tests require minimal parametric assumptions, are flexible about weighting of the various outcomes, and are appropriate even when some or all of the outcomes are censored. The test we propose is based on a simple scoring mechanism applied to each pair of subjects for each endpoint. The pairwise scores are then reduced to a summary score, and a rank-sum test is applied to the summary scores. This can be seen as a generalization of previously proposed nonparametric global tests (e.g., O'Brien, 1984). We discuss the choice of optimal weighting schemes based on power and relative importance of the outcomes. As the optimal weights are generally unknown in practice, we also propose an adaptive weighting scheme and evaluate its performance in simulations. We apply the methods to analyze the impact of a treatment on neurological function and death in an ALS trial.

Suggested Citation

  • Ritesh Ramchandani & David A. Schoenfeld & Dianne M. Finkelstein, 2016. "Global rank tests for multiple, possibly censored, outcomes," Biometrics, The International Biometric Society, vol. 72(3), pages 926-935, September.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:926-935
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Mao & KyungMann Kim & Xinran Miao, 2022. "Sample size formula for general win ratio analysis," Biometrics, The International Biometric Society, vol. 78(3), pages 1257-1268, September.
    2. William N. Anderson & Johan Verbeeck, 2023. "Exact Permutation and Bootstrap Distribution of Generalized Pairwise Comparisons Statistics," Mathematics, MDPI, vol. 11(6), pages 1-19, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:926-935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.