IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1162-d1081417.html
   My bibliography  Save this article

On Bending of Piezoelectrically Layered Perforated Nanobeams Embedded in an Elastic Foundation with Flexoelectricity

Author

Listed:
  • Alaa A. Abdelrahman

    (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University, Zagazig P.O. Box 44519, Egypt)

  • Hussein A. Saleem

    (Mining Engineering Department, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia)

  • Gamal S. Abdelhaffez

    (Mining Engineering Department, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia)

  • Mohamed A. Eltaher

    (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia)

Abstract

Analysis of the electromechanical-size-dependent bending of piezoelectric composite structural components with flexoelectricity has been considered by many researchers because of the developments of nanotechnology and the applicability of piezoelectric composite nanobeam structures in Micro/Nano-Electro-Mechanical Systems (MEMS/NEMS). Therefore, the work investigates the size-dependent electromechanical bending of piezoelectrically layered perforated nanobeams resting on elastic foundations including the flexoelectric effect. Within the framework of the modified nonlocal strain gradient elasticity theory, both the microstructure and nonlocality effects are captured. The governing equilibrium equations including piezoelectric and flexoelectric effects are derived using Hamilton’s principle. Closed forms for the non-classical electromechanical bending profiles are derived. The accuracy of the proposed methodology is verified by comparing the obtained results with the available corresponding results in the literature within a 0.3% maximum deviation. Parametric studies are conducted to explore effects of perforation parameters, elastic foundation parameters, geometric dimensions, nonclassical parameters, flexoelectric parameters, as well as the piezoelectric parameters on the bending behavior of piezoelectrically layered perforated nanobeams. The obtained results demonstrate that incorporation of the nondimensional elastic foundation parameters, K p = 2 and K w = 20, results in a reduction in the relative percentage reduction in the maximum nondimensional mechanical transverse deflection due to increasing the perforation filling ratio from 0.2 to 1 from 199.86% to 91.83% for a point load and 89.39% for a uniformly distributed load. On the other hand, with K p = 5 and K w = 50, the relative percentage difference of the electromechanical bending deflection due to increasing the piezoelectric coefficient, e 311 , reaches about 8.7% for a point load and 8.5% for a uniformly distributed load at a beam aspect ratio of 50. Thus, the electromechanical as well as mechanical behaviors could be improved by controlling these parameters. The proposed methodology and the obtained results are supportive in many industrial and engineering applications, i.e., MEMS/NEMS.

Suggested Citation

  • Alaa A. Abdelrahman & Hussein A. Saleem & Gamal S. Abdelhaffez & Mohamed A. Eltaher, 2023. "On Bending of Piezoelectrically Layered Perforated Nanobeams Embedded in an Elastic Foundation with Flexoelectricity," Mathematics, MDPI, vol. 11(5), pages 1-24, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1162-:d:1081417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Tocci Monaco & Nicholas Fantuzzi & Francesco Fabbrocino & Raimondo Luciano, 2021. "Trigonometric Solution for the Bending Analysis of Magneto-Electro-Elastic Strain Gradient Nonlocal Nanoplates in Hygro-Thermal Environment," Mathematics, MDPI, vol. 9(5), pages 1-22, March.
    2. khabaz, Mohamad Khaje & Eftekhari, S. Ali & Toghraie, Davood, 2022. "Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    3. Boyina, Kalyan & Piska, Raghu, 2023. "Wave propagation analysis in viscoelastic Timoshenko nanobeams under surface and magnetic field effects based on nonlocal strain gradient theory," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaa A. Abdelrahman & Mohamed S. Abdelwahed & Hani M. Ahmed & Amin Hamdi & Mohamed A. Eltaher, 2023. "Investigation of Size-Dependent Vibration Behavior of Piezoelectric Composite Nanobeams Embedded in an Elastic Foundation Considering Flexoelectricity Effects," Mathematics, MDPI, vol. 11(5), pages 1-31, February.
    2. Ammar Melaibari & Alaa A. Abdelrahman & Mostafa A. Hamed & Ahmed W. Abdalla & Mohamed A. Eltaher, 2022. "Dynamic Analysis of a Piezoelectrically Layered Perforated Nonlocal Strain Gradient Nanobeam with Flexoelectricity," Mathematics, MDPI, vol. 10(15), pages 1-22, July.
    3. Mahmure Avey & Nicholas Fantuzzi & Abdullah H. Sofiyev, 2023. "Analytical Solution of Stability Problem of Nanocomposite Cylindrical Shells under Combined Loadings in Thermal Environments," Mathematics, MDPI, vol. 11(17), pages 1-21, September.
    4. Alshenawy, Reda & Sahmani, Saeid & Safaei, Babak & Elmoghazy, Yasser & Al-Alwan, Ali & Nuwairan, Muneerah Al, 2023. "Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM strain gradient formulations," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    5. Krzysztof Kamil Żur & Jinseok Kim & Junuthula N. Reddy, 2022. "Special Issue of Mathematics : Analytical and Numerical Methods for Linear and Nonlinear Analysis of Structures at Macro, Micro and Nano Scale," Mathematics, MDPI, vol. 10(13), pages 1-2, June.
    6. Mahmure Avey & Nicholas Fantuzzi & Abdullah Sofiyev, 2022. "Mathematical Modeling and Analytical Solution of Thermoelastic Stability Problem of Functionally Graded Nanocomposite Cylinders within Different Theories," Mathematics, MDPI, vol. 10(7), pages 1-11, March.
    7. Nguyen, Nam V. & Tran, Kim Q. & Lee, Jaehong & Nguyen-Xuan, H., 2024. "Nonlocal strain gradient-based isogeometric analysis of graphene platelets-reinforced functionally graded triply periodic minimal surface nanoplates," Applied Mathematics and Computation, Elsevier, vol. 466(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1162-:d:1081417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.