Wave propagation analysis in viscoelastic Timoshenko nanobeams under surface and magnetic field effects based on nonlocal strain gradient theory
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.127580
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Thang, Pham Toan & Nguyen-Thoi, T. & Lee, Jaehong, 2021. "Modeling and analysis of bi-directional functionally graded nanobeams based on nonlocal strain gradient theory," Applied Mathematics and Computation, Elsevier, vol. 407(C).
- Imani Aria, A. & Biglari, H., 2018. "Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 313-332.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alaa A. Abdelrahman & Mohamed S. Abdelwahed & Hani M. Ahmed & Amin Hamdi & Mohamed A. Eltaher, 2023. "Investigation of Size-Dependent Vibration Behavior of Piezoelectric Composite Nanobeams Embedded in an Elastic Foundation Considering Flexoelectricity Effects," Mathematics, MDPI, vol. 11(5), pages 1-31, February.
- Nguyen, Nam V. & Tran, Kim Q. & Lee, Jaehong & Nguyen-Xuan, H., 2024. "Nonlocal strain gradient-based isogeometric analysis of graphene platelets-reinforced functionally graded triply periodic minimal surface nanoplates," Applied Mathematics and Computation, Elsevier, vol. 466(C).
- Alaa A. Abdelrahman & Hussein A. Saleem & Gamal S. Abdelhaffez & Mohamed A. Eltaher, 2023. "On Bending of Piezoelectrically Layered Perforated Nanobeams Embedded in an Elastic Foundation with Flexoelectricity," Mathematics, MDPI, vol. 11(5), pages 1-24, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jahangiri, M. & Asghari, M., 2023. "The strain gradient-based torsional vibration analysis of micro-rotors with nonlinear flexural-torsional coupling," Applied Mathematics and Computation, Elsevier, vol. 440(C).
- Alshenawy, Reda & Sahmani, Saeid & Safaei, Babak & Elmoghazy, Yasser & Al-Alwan, Ali & Nuwairan, Muneerah Al, 2023. "Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM strain gradient formulations," Applied Mathematics and Computation, Elsevier, vol. 439(C).
More about this item
Keywords
Nonlocal strain gradient theory; Wave propagation; Visco-elasticity; Timoshenko beam; Magnetic field; Surface stress; Carbon nanotube;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:439:y:2023:i:c:s0096300322006543. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.