IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1111-d1077627.html
   My bibliography  Save this article

Transformer-Based Seq2Seq Model for Chord Progression Generation

Author

Listed:
  • Shuyu Li

    (Department of Multimedia Engineering, Graduate School, Dongguk University–Seoul, Seoul 04620, Republic of Korea)

  • Yunsick Sung

    (Department of Multimedia Engineering, Dongguk University–Seoul, Seoul 04620, Republic of Korea)

Abstract

Machine learning is widely used in various practical applications with deep learning models demonstrating advantages in handling huge data. Treating music as a special language and using deep learning models to accomplish melody recognition, music generation, and music analysis has proven feasible. In certain music-related deep learning research, recurrent neural networks have been replaced with transformers. This has achieved significant results. In traditional approaches with recurrent neural networks, input sequences are limited in length. This paper proposes a method to generate chord progressions for melodies using a transformer-based sequence-to-sequence model, which is divided into a pre-trained encoder and decoder. A pre-trained encoder extracts contextual information from melodies, whereas a decoder uses this information to produce chords asynchronously and finally outputs chord progressions. The proposed method addresses length limitation issues while considering the harmony between chord progressions and melodies. Chord progressions can be generated for melodies in practical music composition applications. Evaluation experiments are conducted using the proposed method and three baseline models. The baseline models included the bidirectional long short-term memory (BLSTM), bidirectional encoder representation from transformers (BERT), and generative pre-trained transformer (GPT2). The proposed method outperformed the baseline models in Hits@k ( k = 1) by 25.89, 1.54, and 2.13 %, respectively.

Suggested Citation

  • Shuyu Li & Yunsick Sung, 2023. "Transformer-Based Seq2Seq Model for Chord Progression Generation," Mathematics, MDPI, vol. 11(5), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1111-:d:1077627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuyu Li & Sejun Jang & Yunsick Sung, 2019. "Automatic Melody Composition Using Enhanced GAN," Mathematics, MDPI, vol. 7(10), pages 1-13, September.
    2. Zhe Jiang & Shuyu Li & Yunsick Sung, 2022. "Enhanced Evaluation Method of Musical Instrument Digital Interface Data based on Random Masking and Seq2Seq Model," Mathematics, MDPI, vol. 10(15), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuyu Li & Yunsick Sung, 2023. "MRBERT: Pre-Training of Melody and Rhythm for Automatic Music Generation," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    2. Arulsamy, Karen & Delaney, Liam, 2022. "The impact of automatic enrolment on the mental health gap in pension participation: Evidence from the UK," Journal of Health Economics, Elsevier, vol. 86(C).
    3. Wenkai Huang & Feng Zhan, 2023. "A Novel Probabilistic Diffusion Model Based on the Weak Selection Mimicry Theory for the Generation of Hypnotic Songs," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    4. Shuyu Li & Yunsick Sung, 2021. "INCO-GAN: Variable-Length Music Generation Method Based on Inception Model-Based Conditional GAN," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    5. Sejun Jang & Shuyu Li & Yunsick Sung, 2020. "FastText-Based Local Feature Visualization Algorithm for Merged Image-Based Malware Classification Framework for Cyber Security and Cyber Defense," Mathematics, MDPI, vol. 8(3), pages 1-13, March.
    6. Hyewon Yoon & Shuyu Li & Yunsick Sung, 2021. "Style Transformation Method of Stage Background Images by Emotion Words of Lyrics," Mathematics, MDPI, vol. 9(15), pages 1-20, August.
    7. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "DBTMPE: Deep Bidirectional Transformers-Based Masked Predictive Encoder Approach for Music Genre Classification," Mathematics, MDPI, vol. 9(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1111-:d:1077627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.