IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p978-d1068277.html
   My bibliography  Save this article

Stabilization of Nonlinear Vibration of a Fractional-Order Arch MEMS Resonator Using a New Disturbance-Observer-Based Finite-Time Sliding Mode Control

Author

Listed:
  • Hajid Alsubaie

    (Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Amin Yousefpour

    (Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA)

  • Ahmed Alotaibi

    (Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Naif D. Alotaibi

    (Communication Systems and Networks Research Group, Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Hadi Jahanshahi

    (Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada)

Abstract

This paper deals with chaos control in an arch microelectromechanical system (MEMS) from the fractional calculus perspective. There is a growing need for effective controllers in various technological fields, and it is important to consider disruptions, uncertainties, and control input limitations when designing a practical controller. To address this problem, we propose a novel disturbance-observer-based terminal sliding mode control technique for stabilizing and controlling chaos in a fractional-order arch MEMS resonator. The design of this technique takes into account uncertainty, disturbances, and control input saturation in the fractional-order system. The proposed control technique is practical for real-world applications because it includes control input saturation. The equation for a fractional-order arch MEMS resonator is presented, and its nonlinear vibration and chaotic behavior are studied. The design process for the proposed control technique is then described. The Lyapunov stability theorem is used to prove the finite-time convergence of the proposed controller and disturbance observer. The proposed controller is applied to the arch MEMS resonator, and numerical simulations are used to demonstrate its effectiveness and robustness for uncertain nonlinear systems. The results of these simulations clearly show the effectiveness of the proposed control technique.

Suggested Citation

  • Hajid Alsubaie & Amin Yousefpour & Ahmed Alotaibi & Naif D. Alotaibi & Hadi Jahanshahi, 2023. "Stabilization of Nonlinear Vibration of a Fractional-Order Arch MEMS Resonator Using a New Disturbance-Observer-Based Finite-Time Sliding Mode Control," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:978-:d:1068277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/978/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/978/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Jahanshahi, Hadi & Yousefpour, Amin & Wei, Zhouchao & Alcaraz, Raúl & Bekiros, Stelios, 2019. "A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 66-77.
    3. Qijia Yao & Hadi Jahanshahi & Irene Moroz & Naif D. Alotaibi & Stelios Bekiros, 2022. "Neural Adaptive Fixed-Time Attitude Stabilization and Vibration Suppression of Flexible Spacecraft," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    4. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Indirect Neural-Enhanced Integral Sliding Mode Control for Finite-Time Fault-Tolerant Attitude Tracking of Spacecraft," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    5. Jahanshahi, Hadi & Sajjadi, Samaneh Sadat & Bekiros, Stelios & Aly, Ayman A., 2021. "On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Wang, Yong-Long & Jahanshahi, Hadi & Bekiros, Stelios & Bezzina, Frank & Chu, Yu-Ming & Aly, Ayman A., 2021. "Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    7. Xiong, Pei-Ying & Jahanshahi, Hadi & Alcaraz, Raúl & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alsaadi, Fawaz E., 2021. "Spectral Entropy Analysis and Synchronization of a Multi-Stable Fractional-Order Chaotic System using a Novel Neural Network-Based Chattering-Free Sliding Mode Technique," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Angel Hernández-Pérez & Gustavo Delgado-Reyes & Vicente Borja-Jaimes & Jorge Salvador Valdez-Martínez & Marisol Cervantes-Bobadilla, 2023. "An Adaptation of a Sliding Mode Classical Observer to a Fractional-Order Observer for Disturbance Reconstruction of a UAV Model: A Riemann–Liouville Fractional Calculus Approach," Mathematics, MDPI, vol. 11(24), pages 1-23, December.
    2. Majid Roohi & Saeed Mirzajani & Andreas Basse-O’Connor, 2023. "A No-Chatter Single-Input Finite-Time PID Sliding Mode Control Technique for Stabilization of a Class of 4D Chaotic Fractional-Order Laser Systems," Mathematics, MDPI, vol. 11(21), pages 1-22, October.
    3. Mingyuan Hu & Hyeongki Ahn & Yoonuh Chung & Kwanho You, 2023. "Speed Regulation for PMSM with Super-Twisting Sliding-Mode Controller via Disturbance Observer," Mathematics, MDPI, vol. 11(7), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsaade, Fawaz W. & Yao, Qijia & Bekiros, Stelios & Al-zahrani, Mohammed S. & Alzahrani, Ali S. & Jahanshahi, Hadi, 2022. "Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Ouannas, Adel & Batiha, Iqbal M. & Bekiros, Stelios & Liu, Jinping & Jahanshahi, Hadi & Aly, Ayman A. & Alghtani, Abdulaziz H., 2021. "Synchronization of the glycolysis reaction-diffusion model via linear control law," LSE Research Online Documents on Economics 112776, London School of Economics and Political Science, LSE Library.
    4. Qing Ding & Oumate Alhadji Abba & Hadi Jahanshahi & Madini O. Alassafi & Wen-Hua Huang, 2022. "Dynamical Investigation, Electronic Circuit Realization and Emulation of a Fractional-Order Chaotic Three-Echelon Supply Chain System," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    5. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    6. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Indirect Neural-Enhanced Integral Sliding Mode Control for Finite-Time Fault-Tolerant Attitude Tracking of Spacecraft," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    7. Liu, Chongyang & Zhou, Tuo & Gong, Zhaohua & Yi, Xiaopeng & Teo, Kok Lay & Wang, Song, 2023. "Robust optimal control of nonlinear fractional systems," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Bekiros, Stelios & Jahanshahi, Hadi & Bezzina, Frank & Aly, Ayman A., 2021. "A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Sanda Florentina Mihalache & Naif D. Alotaibi, 2022. "Gain-Scheduled Sliding-Mode-Type Iterative Learning Control Design for Mechanical Systems," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    10. Wang, Yong-Long & Jahanshahi, Hadi & Bekiros, Stelios & Bezzina, Frank & Chu, Yu-Ming & Aly, Ayman A., 2021. "Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Wang, Bo & Liu, Jinping & Alassafi, Madini O. & Alsaadi, Fawaz E. & Jahanshahi, Hadi & Bekiros, Stelios, 2022. "Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    12. Qijia Yao & Hadi Jahanshahi & Larissa M. Batrancea & Naif D. Alotaibi & Mircea-Iosif Rus, 2022. "Fixed-Time Output-Constrained Synchronization of Unknown Chaotic Financial Systems Using Neural Learning," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    13. Sepestanaki, Mohammadreza Askari & Rezaee, Hamidreza & Soofi, Mohammad & Fayazi, Hossein & Rouhani, Seyed Hossein & Mobayen, Saleh, 2024. "Adaptive continuous barrier function-based super-twisting global sliding mode stabilizer for chaotic supply chain systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    14. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    15. Nguyen Xuan-Mung & Mehdi Golestani & Sung Kyung Hong, 2023. "Constrained Nonsingular Terminal Sliding Mode Attitude Control for Spacecraft: A Funnel Control Approach," Mathematics, MDPI, vol. 11(1), pages 1-23, January.
    16. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    17. Alsaadi, Fawaz E. & Bekiros, Stelios & Yao, Qijia & Liu, Jinping & Jahanshahi, Hadi, 2023. "Achieving resilient chaos suppression and synchronization of fractional-order supply chains with fault-tolerant control," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Qijia Yao & Hadi Jahanshahi & Stelios Bekiros & Jinping Liu & Abdullah A. Al-Barakati, 2023. "Fixed-Time Adaptive Chaotic Control for Permanent Magnet Synchronous Motor Subject to Unknown Parameters and Perturbations," Mathematics, MDPI, vol. 11(14), pages 1-14, July.
    19. Paul, James Nicodemus & Mbalawata, Isambi Sailon & Mirau, Silas Steven & Masandawa, Lemjini, 2023. "Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    20. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:978-:d:1068277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.