IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p928-d1065954.html
   My bibliography  Save this article

Blockchain-Driven Real-Time Incentive Approach for Energy Management System

Author

Listed:
  • Aparna Kumari

    (Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India)

  • Riya Kakkar

    (Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India)

  • Rajesh Gupta

    (Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India)

  • Smita Agrawal

    (Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India)

  • Sudeep Tanwar

    (Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, Gujarat, India)

  • Fayez Alqahtani

    (Software Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 12372, Saudi Arabia)

  • Amr Tolba

    (Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia)

  • Maria Simona Raboaca

    (Doctoral School, University Politehnica of Bucharest, Splaiul Independentei Street No. 313, 060042 Bucharest, Romania
    National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Rm. Vâlcea, Uzinei Street, No. 4, 240050 Râmnicu Vâlcea, Romania)

  • Daniela Lucia Manea

    (Faculty of Civil Engineering, Technical University of Cluj-Napoca, Constantin Daicoviciu Street, No. 15, 400020 Cluj-Napoca, Romania)

Abstract

In the current era, the skyrocketing demand for energy necessitates a powerful mechanism to mitigate the supply–demand gap in intelligent energy infrastructure, i.e., the smart grid. To handle this issue, an intelligent and secure energy management system (EMS) could benefit end-consumers participating in the Demand–Response (DR) program. Therefore, in this paper, we proposed a real-time and secure incentive-based EMS for smart grid, i.e., RI-EMS approach using Reinforcement Learning (RL) and blockchain technology. In the RI-EMS approach, we proposed a novel reward mechanism for better convergence of the RL-based model using a Q-learning approach based on the greedy policy that guides the RL-agent for faster convergence. Then, the proposed RI-EMS approach designed a real-time incentive mechanism to minimize energy consumption in peak hours and reduce end-consumers’ energy bills to provide incentives to the end-consumers. Experimental results show that the proposed RI-EMS approach induces end-consumer participation and increases customer profitabilities compared to existing approaches considering the different performance evaluation metrics such as energy consumption for end-consumers, energy consumption reduction, and total cost comparison to end-consumers. Furthermore, blockchain-based results are simulated and analyzed with the help of deployed smart contracts in a Remix Integrated Development Environment (IDE) with the parameters such as transaction efficiency and data storage cost.

Suggested Citation

  • Aparna Kumari & Riya Kakkar & Rajesh Gupta & Smita Agrawal & Sudeep Tanwar & Fayez Alqahtani & Amr Tolba & Maria Simona Raboaca & Daniela Lucia Manea, 2023. "Blockchain-Driven Real-Time Incentive Approach for Energy Management System," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:928-:d:1065954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mota, Bruno & Faria, Pedro & Vale, Zita, 2022. "Residential load shifting in demand response events for bill reduction using a genetic algorithm," Energy, Elsevier, vol. 260(C).
    2. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    3. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    4. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seongwoo Lee & Joonho Seon & Byungsun Hwang & Soohyun Kim & Youngghyu Sun & Jinyoung Kim, 2024. "Recent Trends and Issues of Energy Management Systems Using Machine Learning," Energies, MDPI, vol. 17(3), pages 1-24, January.
    2. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).
    3. Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    4. S. Sofana Reka & Prakash Venugopal & V. Ravi & Tomislav Dragicevic, 2023. "Privacy-Based Demand Response Modeling for Residential Consumers Using Machine Learning with a Cloud–Fog-Based Smart Grid Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.
    5. Kansal, Gaurav & Tiwari, Rajive, 2024. "A PEM-based augmented IBDR framework and its evaluation in contemporary distribution systems," Energy, Elsevier, vol. 296(C).
    6. Guo, Chenyu & Wang, Xin & Zheng, Yihui & Zhang, Feng, 2022. "Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    7. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    8. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Seppo Sierla & Heikki Ihasalo & Valeriy Vyatkin, 2022. "A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air Conditioning Systems," Energies, MDPI, vol. 15(10), pages 1-25, May.
    10. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    11. Hui Wang & Yao Xu, 2024. "Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study," Energies, MDPI, vol. 17(11), pages 1-15, May.
    12. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    13. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    14. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    15. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    16. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    17. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    19. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    20. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:928-:d:1065954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.