IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p862-d1061480.html
   My bibliography  Save this article

MFO-SFR: An Enhanced Moth-Flame Optimization Algorithm Using an Effective Stagnation Finding and Replacing Strategy

Author

Listed:
  • Mohammad H. Nadimi-Shahraki

    (Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
    Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran)

  • Hoda Zamani

    (Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
    Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran)

  • Ali Fatahi

    (Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
    Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran)

  • Seyedali Mirjalili

    (Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane 4006, Australia
    Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea)

Abstract

Moth-flame optimization (MFO) is a prominent problem solver with a simple structure that is widely used to solve different optimization problems. However, MFO and its variants inherently suffer from poor population diversity, leading to premature convergence to local optima and losses in the quality of its solutions. To overcome these limitations, an enhanced moth-flame optimization algorithm named MFO-SFR was developed to solve global optimization problems. The MFO-SFR algorithm introduces an effective stagnation finding and replacing (SFR) strategy to effectively maintain population diversity throughout the optimization process. The SFR strategy can find stagnant solutions using a distance-based technique and replaces them with a selected solution from the archive constructed from the previous solutions. The effectiveness of the proposed MFO-SFR algorithm was extensively assessed in 30 and 50 dimensions using the CEC 2018 benchmark functions, which simulated unimodal, multimodal, hybrid, and composition problems. Then, the obtained results were compared with two sets of competitors. In the first comparative set, the MFO algorithm and its well-known variants, specifically LMFO, WCMFO, CMFO, ODSFMFO, SMFO, and WMFO, were considered. Five state-of-the-art metaheuristic algorithms, including PSO, KH, GWO, CSA, and HOA, were considered in the second comparative set. The results were then statistically analyzed through the Friedman test. Ultimately, the capacity of the proposed algorithm to solve mechanical engineering problems was evaluated with two problems from the latest CEC 2020 test-suite. The experimental results and statistical analysis confirmed that the proposed MFO-SFR algorithm was superior to the MFO variants and state-of-the-art metaheuristic algorithms for solving complex global optimization problems, with 91.38% effectiveness.

Suggested Citation

  • Mohammad H. Nadimi-Shahraki & Hoda Zamani & Ali Fatahi & Seyedali Mirjalili, 2023. "MFO-SFR: An Enhanced Moth-Flame Optimization Algorithm Using an Effective Stagnation Finding and Replacing Strategy," Mathematics, MDPI, vol. 11(4), pages 1-28, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:862-:d:1061480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad H. Nadimi-Shahraki & Ali Fatahi & Hoda Zamani & Seyedali Mirjalili, 2022. "Binary Approaches of Quantum-Based Avian Navigation Optimizer to Select Effective Features from High-Dimensional Medical Data," Mathematics, MDPI, vol. 10(15), pages 1-30, August.
    2. Jayashree Piri & Puspanjali Mohapatra & Biswaranjan Acharya & Farhad Soleimanian Gharehchopogh & Vassilis C. Gerogiannis & Andreas Kanavos & Stella Manika, 2022. "Feature Selection Using Artificial Gorilla Troop Optimization for Biomedical Data: A Case Analysis with COVID-19 Data," Mathematics, MDPI, vol. 10(15), pages 1-31, August.
    3. Fan Wang & Xiang Liao & Na Fang & Zhiqiang Jiang, 2022. "Optimal Scheduling of Regional Combined Heat and Power System Based on Improved MFO Algorithm," Energies, MDPI, vol. 15(9), pages 1-30, May.
    4. Chen, Chengcheng & Wang, Xianchang & Yu, Helong & Wang, Mingjing & Chen, Huiling, 2021. "Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 291-318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanhong Feng & Hongmei Wang & Zhaoquan Cai & Mingliang Li & Xi Li, 2023. "Hybrid Learning Moth Search Algorithm for Solving Multidimensional Knapsack Problems," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
    2. Adrian Marius Deaconu & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2023. "Advanced Optimization Methods and Applications," Mathematics, MDPI, vol. 11(9), pages 1-7, May.
    3. Jinhua You & Heming Jia & Di Wu & Honghua Rao & Changsheng Wen & Qingxin Liu & Laith Abualigah, 2023. "Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    4. Yu, Xiaobing & Wang, Haoyu & Lu, Yangchen, 2024. "An adaptive ranking moth flame optimizer for feature selection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 164-184.
    5. Alokananda Dey & Siddhartha Bhattacharyya & Sandip Dey & Debanjan Konar & Jan Platos & Vaclav Snasel & Leo Mrsic & Pankaj Pal, 2023. "A Review of Quantum-Inspired Metaheuristic Algorithms for Automatic Clustering," Mathematics, MDPI, vol. 11(9), pages 1-44, April.
    6. Hema Banati & Richa Sharma & Asha Yadav, 2024. "Binary Peacock Algorithm: A Novel Metaheuristic Approach for Feature Selection," Journal of Classification, Springer;The Classification Society, vol. 41(2), pages 216-244, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:862-:d:1061480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.