IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p311-d1028030.html
   My bibliography  Save this article

The Vehicle Routing Problem with Simultaneous Pickup and Delivery Considering the Total Number of Collected Goods

Author

Listed:
  • Qinge Guo

    (School of Management, Xi’an Jiaotong University, Xi’an 710049, China
    School of Economics and Management, Xi’an Technological University, Xi’an 710021, China)

  • Nengmin Wang

    (School of Management, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

As a consequence of e-commerce development, large quantities of returned goods are shipped every day. The vehicle routing problem with simultaneous delivery and pickup (VRPSDP) has become one of the most important areas of logistics management. Most related studies are aimed at minimizing travel time. However, the total number of collected goods is also very important to logistics companies. Thus, only considering the traveling time cannot reflect actual practice. To effectively optimize these operations for logistics companies, this paper introduces the vehicle routing problem with simultaneous pickup and delivery considering the total number of collected goods. Based on the principles of considering the number of collected goods, a bi-objective vehicle routing model minimizing the total travel time and maximizing the total number of collected goods simultaneously is developed. A polynomial time approximation algorithm based on the ε -constraint method is designed to address this problem, and the approximation ratio of the algorithm is analyzed. Finally, the validity and feasibility of the proposed model and algorithm are verified by test examples, and several managerial insights are derived from the sensitivity analysis.

Suggested Citation

  • Qinge Guo & Nengmin Wang, 2023. "The Vehicle Routing Problem with Simultaneous Pickup and Delivery Considering the Total Number of Collected Goods," Mathematics, MDPI, vol. 11(2), pages 1-10, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:311-:d:1028030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bérubé, Jean-François & Gendreau, Michel & Potvin, Jean-Yves, 2009. "An exact [epsilon]-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits," European Journal of Operational Research, Elsevier, vol. 194(1), pages 39-50, April.
    2. Zhu, Lin & Sheu, Jiuh-Biing, 2018. "Failure-specific cooperative recourse strategy for simultaneous pickup and delivery problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 271(3), pages 896-912.
    3. Li, Chongshou & Gong, Lijun & Luo, Zhixing & Lim, Andrew, 2019. "A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing," Omega, Elsevier, vol. 89(C), pages 71-91.
    4. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2017. "Vehicle routing strategies for pick-up and delivery service under two dimensional loading constraints," Operational Research, Springer, vol. 17(1), pages 115-143, April.
    5. Minis, I. & Tatarakis, A., 2011. "Stochastic single vehicle routing problem with delivery and pick up and a predefined customer sequence," European Journal of Operational Research, Elsevier, vol. 213(1), pages 37-51, August.
    6. Mauro Dell’Amico & Giovanni Righini & Matteo Salani, 2006. "A Branch-and-Price Approach to the Vehicle Routing Problem with Simultaneous Distribution and Collection," Transportation Science, INFORMS, vol. 40(2), pages 235-247, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinggui Zhang & Lining Sheng, 2023. "Optimization of Simultaneous Pickup and Delivery Vehicle Routing with Three-Dimensional Balanced Loading Constraints," Sustainability, MDPI, vol. 15(11), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Zhu, Lin & Sheu, Jiuh-Biing, 2018. "Failure-specific cooperative recourse strategy for simultaneous pickup and delivery problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 271(3), pages 896-912.
    3. Zhou, Jian & Li, Hui & Gu, Yujie & Zhao, Mingxuan & Xie, Xuehui & Zheng, Haoran & Fang, Xinghua, 2021. "A novel two-phase approach for the bi-objective simultaneous delivery and pickup problem with fuzzy pickup demands," International Journal of Production Economics, Elsevier, vol. 234(C).
    4. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    5. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    6. Pandelis, D.G. & Karamatsoukis, C.C. & Kyriakidis, E.G., 2013. "Finite and infinite-horizon single vehicle routing problems with a predefined customer sequence and pickup and delivery," European Journal of Operational Research, Elsevier, vol. 231(3), pages 577-586.
    7. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "Data Transformation in the Predict-Then-Optimize Framework: Enhancing Decision Making under Uncertainty," Mathematics, MDPI, vol. 11(17), pages 1-12, September.
    8. Yu, Bin & Shan, Wenxuan & Sheu, Jiuh-Biing & Diabat, Ali, 2022. "Branch-and-price for a combined order selection and distribution problem in online community group-buying of perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 341-373.
    9. Xuemin Liu & Guozhong Huang & Shengnan Ou & Xingyu Xiao & Xuehong Gao & Zhangzhou Meng & Youqiang Pan & Ibrahim M. Hezam, 2023. "Biobjective Optimization Model Considering Risk and Profit for the Multienterprise Layout Design in Village-Level Industrial Parks in China," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    10. Ahn, Jaemyung & de Weck, Olivier & Geng, Yue & Klabjan, Diego, 2012. "Column generation based heuristics for a generalized location routing problem with profits arising in space exploration," European Journal of Operational Research, Elsevier, vol. 223(1), pages 47-59.
    11. Ilaria Vacca & Matteo Salani & Michel Bierlaire, 2013. "An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment," Transportation Science, INFORMS, vol. 47(2), pages 148-161, May.
    12. Wangying Xu & Xiaobing Yu, 2022. "Adaptive Guided Spatial Compressive Cuckoo Search for Optimization Problems," Mathematics, MDPI, vol. 10(3), pages 1-28, February.
    13. Christian Artigues & Nicolas Jozefowiez & Boadu M. Sarpong, 2018. "Column generation algorithms for bi-objective combinatorial optimization problems with a min–max objective," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 117-142, June.
    14. Burdett, Robert & Kozan, Erhan, 2016. "A multi-criteria approach for hospital capacity analysis," European Journal of Operational Research, Elsevier, vol. 255(2), pages 505-521.
    15. Peter Reiter & Walter Gutjahr, 2012. "Exact hybrid algorithms for solving a bi-objective vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 19-43, March.
    16. Ioanna Makarouni & John Psarras & Eleftherios Siskos, 2015. "Interactive bicriterion decision support for a large scale industrial scheduling system," Annals of Operations Research, Springer, vol. 227(1), pages 45-61, April.
    17. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    18. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "A bi-objective approach to discrete cost-bottleneck location problems," Annals of Operations Research, Springer, vol. 267(1), pages 179-201, August.
    19. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    20. Li, Chongshou & Gong, Lijun & Luo, Zhixing & Lim, Andrew, 2019. "A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing," Omega, Elsevier, vol. 89(C), pages 71-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:311-:d:1028030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.