IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p4959-d1300422.html
   My bibliography  Save this article

An Advanced Segmentation Approach to Piecewise Regression Models

Author

Listed:
  • Kang-Ping Lu

    (Department of Applied Statistics, National Taichung University of Science and Technology, Taichung 404336, Taiwan)

  • Shao-Tung Chang

    (Department of Mathematics, National Taiwan Normal University, Taipei 106308, Taiwan)

Abstract

Two problems concerning detecting change-points in linear regression models are considered. One involves discontinuous jumps in a regression model and the other involves regression lines connected at unknown places. Significant literature has been developed for estimating piecewise regression models because of their broad range of applications. The segmented (SEG) regression method with an R package has been employed by many researchers since it is easy to use, converges fast, and produces sufficient estimates. The SEG method allows for multiple change-points but is restricted to continuous models. Such a restriction really limits the practical applications of SEG when it comes to discontinuous jumps encountered in real change-point problems very often. In this paper, we propose a piecewise regression model, allowing for discontinuous jumps, connected lines, or the occurrences of jumps and connected change-points in a single model. The proposed segmentation approach can derive the estimates of jump points, connected change-points, and regression parameters simultaneously, allowing for multiple change-points. The initializations of the proposed algorithm and the decision on the number of segments are discussed. Experimental results and comparisons demonstrate the effectiveness and superiority of the proposed method. Several real examples from diverse areas illustrate the practicability of the new method.

Suggested Citation

  • Kang-Ping Lu & Shao-Tung Chang, 2023. "An Advanced Segmentation Approach to Piecewise Regression Models," Mathematics, MDPI, vol. 11(24), pages 1-23, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4959-:d:1300422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/4959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/4959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klaus Frick & Axel Munk & Hannes Sieling, 2014. "Multiscale change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 495-580, June.
    2. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    3. Florian Pein & Hannes Sieling & Axel Munk, 2017. "Heterogeneous change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1207-1227, September.
    4. Hawkins, Douglas M., 2001. "Fitting multiple change-point models to data," Computational Statistics & Data Analysis, Elsevier, vol. 37(3), pages 323-341, September.
    5. Venter, J. H. & Steel, S. J., 1996. "Finding multiple abrupt change points," Computational Statistics & Data Analysis, Elsevier, vol. 22(5), pages 481-504, September.
    6. Paul Fearnhead & Guillem Rigaill, 2019. "Changepoint Detection in the Presence of Outliers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 169-183, January.
    7. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    8. Vito Muggeo & Massimo Attanasio & Mariano Porcu, 2009. "A segmented regression model for event history data: an application to the fertility patterns in Italy," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(9), pages 973-988.
    9. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Chengcheng & Dong, Wentao & Liu, Yunhao & Yang, Chao & Yuan, Quan, 2024. "Rethinking bus ridership dynamics: Examining nonlinear effects of determinants on bus ridership changes using city-level panel data from 2010 to 2019," Transport Policy, Elsevier, vol. 151(C), pages 85-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    3. Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
    4. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    5. Kang-Ping Lu & Shao-Tung Chang, 2022. "Robust Switching Regressions Using the Laplace Distribution," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    6. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    7. Michael Messer, 2022. "Bivariate change point detection: Joint detection of changes in expectation and variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 886-916, June.
    8. Davis, Richard A. & Hancock, Stacey A. & Yao, Yi-Ching, 2016. "On consistency of minimum description length model selection for piecewise autoregressions," Journal of Econometrics, Elsevier, vol. 194(2), pages 360-368.
    9. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    10. Lu Shaochuan, 2023. "Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation," International Statistical Review, International Statistical Institute, vol. 91(1), pages 88-113, April.
    11. Florian Pein & Hannes Sieling & Axel Munk, 2017. "Heterogeneous change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1207-1227, September.
    12. Tariku Tesfaye Haile & Fenglin Tian & Ghada AlNemer & Boping Tian, 2024. "Multiscale Change Point Detection for Univariate Time Series Data with Missing Value," Mathematics, MDPI, vol. 12(20), pages 1-22, October.
    13. Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2021. "Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances," Computational Statistics, Springer, vol. 36(2), pages 1365-1390, June.
    14. S Kovács & P Bühlmann & H Li & A Munk, 2023. "Seeded binary segmentation: a general methodology for fast and optimal changepoint detection," Biometrika, Biometrika Trust, vol. 110(1), pages 249-256.
    15. Haeran Cho & Claudia Kirch, 2022. "Two-stage data segmentation permitting multiscale change points, heavy tails and dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 653-684, August.
    16. McGonigle, Euan T. & Cho, Haeran, 2023. "Robust multiscale estimation of time-average variance for time series segmentation," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    17. Michael Messer & Stefan Albert & Gaby Schneider, 2018. "The multiple filter test for change point detection in time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 589-607, August.
    18. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    19. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    20. Andreas Anastasiou & Piotr Fryzlewicz, 2022. "Detecting multiple generalized change-points by isolating single ones," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 141-174, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4959-:d:1300422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.