IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i22p4667-d1281667.html
   My bibliography  Save this article

Methodology for Power Systems’ Emergency Control Based on Deep Learning and Synchronized Measurements

Author

Listed:
  • Mihail Senyuk

    (Department of Automated Electrical Systems, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Murodbek Safaraliev

    (Department of Automated Electrical Systems, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Andrey Pazderin

    (Department of Automated Electrical Systems, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Olga Pichugova

    (Department of Automated Electrical Systems, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Inga Zicmane

    (Faculty of Electrical and Environmental Engineering, Riga Technical University, 1048 Riga, Latvia)

  • Svetlana Beryozkina

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

Abstract

Modern electrical power systems place special demands on the speed and accuracy of transient and steady-state process control. The introduction of renewable energy sources has significantly influenced the amount of inertia and uncertainty of transient processes occurring in energy systems. These changes have led to the need to clarify the existing principles for the implementation of devices for protecting power systems from the loss of small-signal and transient stability. Traditional methods of developing these devices do not provide the required adaptability due to the need to specify a list of accidents to be considered. Therefore, there is a clear need to develop fundamentally new devices for the emergency control of power system modes based on adaptive algorithms. This work proposes to develop emergency control methods based on the use of deep machine learning algorithms and obtained data from synchronized vector measurement devices. This approach makes it possible to ensure adaptability and high performance when choosing control actions. Recurrent neural networks, long short-term memory networks, restricted Boltzmann machines, and self-organizing maps were selected as deep learning algorithms. Testing was performed by using IEEE14, IEEE24, and IEEE39 power system models. Two data samples were considered: with and without data from synchronized vector measurement devices. The highest accuracy of classification of the control actions’ value corresponds to the long short-term memory networks algorithm: the value of the accuracy factor was 94.31% without taking into account the data from the synchronized vector measurement devices and 94.45% when considering this data. The obtained results confirm the possibility of using deep learning algorithms to build an adaptive emergency control system for power systems.

Suggested Citation

  • Mihail Senyuk & Murodbek Safaraliev & Andrey Pazderin & Olga Pichugova & Inga Zicmane & Svetlana Beryozkina, 2023. "Methodology for Power Systems’ Emergency Control Based on Deep Learning and Synchronized Measurements," Mathematics, MDPI, vol. 11(22), pages 1-30, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4667-:d:1281667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/22/4667/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/22/4667/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mihail Senyuk & Murodbek Safaraliev & Aminjon Gulakhmadov & Javod Ahyoev, 2022. "Application of the Conditional Optimization Method for the Synthesis of the Law of Emergency Control of a Synchronous Generator Steam Turbine Operating in a Complex-Closed Configuration Power System," Mathematics, MDPI, vol. 10(21), pages 1-18, October.
    2. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2022. "Artificial Intelligence Techniques for Power System Transient Stability Assessment," Energies, MDPI, vol. 15(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihail Senyuk & Khairan Rajab & Murodbek Safaraliev & Firuz Kamalov, 2023. "Evaluation of the Fast Synchrophasors Estimation Algorithm Based on Physical Signals," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    2. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Ali M. Hakami & Kazi N. Hasan & Mohammed Alzubaidi & Manoj Datta, 2022. "A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 16(1), pages 1-26, December.
    4. Hao Wu & Jing Li & Haibo Yang, 2024. "Research Methods for Transient Stability Analysis of Power Systems under Large Disturbances," Energies, MDPI, vol. 17(17), pages 1-25, August.
    5. Dimitris A. Barkas & Stavros D. Kaminaris & Konstantinos K. Kalkanis & George Ch. Ioannidis & Constantinos S. Psomopoulos, 2022. "Condition Assessment of Power Transformers through DGA Measurements Evaluation Using Adaptive Algorithms and Deep Learning," Energies, MDPI, vol. 16(1), pages 1-17, December.
    6. Chan Gu & Encheng Chi & Chujia Guo & Mostafa M. Salah & Ahmed Shaker, 2023. "A New Self-Tuning Deep Neuro-Sliding Mode Control for Multi-Machine Power System Stabilizer," Mathematics, MDPI, vol. 11(7), pages 1-18, March.
    7. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    8. Saidjon Shiralievich Tavarov & Alexander Sidorov & Zsolt Čonka & Murodbek Safaraliev & Pavel Matrenin & Mihail Senyuk & Svetlana Beryozkina & Inga Zicmane, 2023. "Control of Operational Modes of an Urban Distribution Grid under Conditions of Uncertainty," Energies, MDPI, vol. 16(8), pages 1-18, April.
    9. Jiaojiao Dong & Mirka Mandich & Yinfeng Zhao & Yang Liu & Shutang You & Yilu Liu & Hongming Zhang, 2023. "AI-Based Faster-Than-Real-Time Stability Assessment of Large Power Systems with Applications on WECC System," Energies, MDPI, vol. 16(3), pages 1-12, January.
    10. Zhencheng Fan & Zheng Yan & Shiping Wen, 2023. "Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    11. Nan Li & Jiafei Wu & Lili Shan & Luan Yi, 2024. "Transient Stability Assessment of Power Systems Based on CLV-GAN and I-ECOC," Energies, MDPI, vol. 17(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:22:p:4667-:d:1281667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.