IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p54-d1009875.html
   My bibliography  Save this article

Condition Assessment of Power Transformers through DGA Measurements Evaluation Using Adaptive Algorithms and Deep Learning

Author

Listed:
  • Dimitris A. Barkas

    (Department of Electrical and Electronics Engineering, University of West Attica, GR-12244 Egaleo, Greece)

  • Stavros D. Kaminaris

    (Department of Electrical and Electronics Engineering, University of West Attica, GR-12244 Egaleo, Greece)

  • Konstantinos K. Kalkanis

    (Department of Electrical and Electronics Engineering, University of West Attica, GR-12244 Egaleo, Greece)

  • George Ch. Ioannidis

    (Department of Electrical and Electronics Engineering, University of West Attica, GR-12244 Egaleo, Greece)

  • Constantinos S. Psomopoulos

    (Department of Electrical and Electronics Engineering, University of West Attica, GR-12244 Egaleo, Greece)

Abstract

Condition assessment for critical infrastructure is a key factor for the wellbeing of the modern human. Especially for the electricity network, specific components such as oil-immersed power transformers need to be monitored for their operating condition. Classic approaches for the condition assessment of oil-immersed power transformers have been proposed in the past, such as the dissolved gases analysis and their respective concentration measurements for insulating oils. However, these approaches cannot always correctly (and in many cases not at all) classify the problems in power transformers. In the last two decades, novel approaches are implemented so as to address this problem, including artificial intelligence with neural networks being one form of algorithm. This paper focuses on the implementation of an adaptive number of layers and neural networks, aiming to increase the accuracy of the operating condition of oil-immersed power transformers. This paper also compares the use of various activation functions and different transfer functions other than the neural network implemented. The comparison incorporates the accuracy and total structure size of the neural network.

Suggested Citation

  • Dimitris A. Barkas & Stavros D. Kaminaris & Konstantinos K. Kalkanis & George Ch. Ioannidis & Constantinos S. Psomopoulos, 2022. "Condition Assessment of Power Transformers through DGA Measurements Evaluation Using Adaptive Algorithms and Deep Learning," Energies, MDPI, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:54-:d:1009875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ancuța-Mihaela Aciu & Claudiu-Ionel Nicola & Marcel Nicola & Maria-Cristina Nițu, 2021. "Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks," Energies, MDPI, vol. 14(3), pages 1-22, January.
    2. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2022. "Artificial Intelligence Techniques for Power System Transient Stability Assessment," Energies, MDPI, vol. 15(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgi Ivanov & Anelia Spasova & Valentin Mateev & Iliana Marinova, 2023. "Applied Complex Diagnostics and Monitoring of Special Power Transformers," Energies, MDPI, vol. 16(5), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. Ali M. Hakami & Kazi N. Hasan & Mohammed Alzubaidi & Manoj Datta, 2022. "A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems," Energies, MDPI, vol. 16(1), pages 1-26, December.
    3. Hao Wu & Jing Li & Haibo Yang, 2024. "Research Methods for Transient Stability Analysis of Power Systems under Large Disturbances," Energies, MDPI, vol. 17(17), pages 1-25, August.
    4. Felipe M. Laburú & Thales W. Cabral & Felippe V. Gomes & Eduardo R. de Lima & José C. S. S. Filho & Luís G. P. Meloni, 2024. "New Insights into Gas-in-Oil-Based Fault Diagnosis of Power Transformers," Energies, MDPI, vol. 17(12), pages 1-20, June.
    5. Firas B. Ismail & Maisarah Mazwan & Hussein Al-Faiz & Marayati Marsadek & Hasril Hasini & Ammar Al-Bazi & Young Zaidey Yang Ghazali, 2022. "An Offline and Online Approach to the OLTC Condition Monitoring: A Review," Energies, MDPI, vol. 15(17), pages 1-18, September.
    6. Ancuța-Mihaela Aciu & Sorin Enache & Maria-Cristina Nițu, 2024. "A Reviewed Turn at of Methods for Determining the Type of Fault in Power Transformers Based on Dissolved Gas Analysis," Energies, MDPI, vol. 17(10), pages 1-26, May.
    7. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    8. Mihail Senyuk & Murodbek Safaraliev & Andrey Pazderin & Olga Pichugova & Inga Zicmane & Svetlana Beryozkina, 2023. "Methodology for Power Systems’ Emergency Control Based on Deep Learning and Synchronized Measurements," Mathematics, MDPI, vol. 11(22), pages 1-30, November.
    9. Vahid Behjat & Reza Emadifar & Mehrdad Pourhossein & U. Mohan Rao & Issouf Fofana & Reza Najjar, 2021. "Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators," Energies, MDPI, vol. 14(13), pages 1-13, July.
    10. Jiaojiao Dong & Mirka Mandich & Yinfeng Zhao & Yang Liu & Shutang You & Yilu Liu & Hongming Zhang, 2023. "AI-Based Faster-Than-Real-Time Stability Assessment of Large Power Systems with Applications on WECC System," Energies, MDPI, vol. 16(3), pages 1-12, January.
    11. Zhencheng Fan & Zheng Yan & Shiping Wen, 2023. "Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    12. Nan Li & Jiafei Wu & Lili Shan & Luan Yi, 2024. "Transient Stability Assessment of Power Systems Based on CLV-GAN and I-ECOC," Energies, MDPI, vol. 17(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:54-:d:1009875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.