IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4516-d1272655.html
   My bibliography  Save this article

A Necessity-Based Optimization Approach for Closed-Loop Logistics Considering Carbon Emission Penalties and Rewards under Uncertainty

Author

Listed:
  • Botang Li

    (Department of Port & Shipping Management, Guangzhou Maritime University, Guangzhou 510725, China)

  • Kaiyuan Liu

    (Logistics Engineering and Simulation Laboratory, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Qiong Chen

    (Navigation College, Jimei University, No.1 Jiageng Road, Jimei District, Xiamen 361021, China)

  • Yui-yip Lau

    (Division of Business and Hospitality Management, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China)

  • Maxim A. Dulebenets

    (Department of Civil and Environmental Engineering, Florida A&M University-Florida State University, Tallahassee, FL 32310, USA)

Abstract

The recycling of waste products can bring enormous economic and environmental benefits to supply chain participants. Under the government’s reward and punishment system, the manufacturing industry is facing unfolded pressure to minimize carbon emissions. However, various factors related to the design of closed-loop logistics networks are uncertain in nature, including demand, facility capacity, transportation cost per unit of product per kilometer, landfill cost, unit carbon penalty cost, and carbon reward amount. As such, this study proposes a new fuzzy programming model for closed-loop supply chain network design which directly relies on fuzzy methods based on the necessity measure. The objective of the proposed optimization model is to minimize the total cost of the network and the sum of carbon rewards and penalties when selecting facility locations and transportation routes between network nodes. Based on the characteristics of the problem, a genetic algorithm based on variant priority encoding is proposed as a solution. This new solution encoding method can make up for the shortcomings of the four traditional encoding methods (i.e., Prüfer number-based encoding, spanning tree-based encoding, forest data structure-based encoding, and priority-based encoding) to speed up the computational time of the solution algorithm. Several alternative solution approaches were considered to evaluate the proposed algorithm including the precision optimization method (CPLEX) and priority-based encoding genetic algorithm. The results of numerous experiments indicated that even for large-scale numerical examples, the proposed algorithm can create optimal and high-quality solutions within acceptable computational time. The applicability of the model was demonstrated through a sensitivity analysis which was conducted by changing the parameters of the model and providing some important management insights. When external parameters change, the solution of the model maintains a certain level of satisfaction conservatism. At the same time, the changes in the penalty cost and reward amount per unit of carbon emissions have a significant impact on the carbon penalty revenue and total cost. The results of this study are expected to provide scientific support to relevant supply chain enterprises and stakeholders.

Suggested Citation

  • Botang Li & Kaiyuan Liu & Qiong Chen & Yui-yip Lau & Maxim A. Dulebenets, 2023. "A Necessity-Based Optimization Approach for Closed-Loop Logistics Considering Carbon Emission Penalties and Rewards under Uncertainty," Mathematics, MDPI, vol. 11(21), pages 1-29, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4516-:d:1272655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Choudhary, Alok & Sarkar, Sagar & Settur, Srikar & Tiwari, M.K., 2015. "A carbon market sensitive optimization model for integrated forward–reverse logistics," International Journal of Production Economics, Elsevier, vol. 164(C), pages 433-444.
    2. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    2. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    3. Olga Lingaitienė & Aurelija Burinskienė & Vida Davidavičienė, 2022. "Case Study of Municipal Waste and Its Reliance on Reverse Logistics in European Countries," Sustainability, MDPI, vol. 14(3), pages 1-24, February.
    4. Chen, Daqiang & Ignatius, Joshua & Sun, Danzhi & Zhan, Shalei & Zhou, Chenyu & Marra, Marianna & Demirbag, Mehmet, 2019. "Reverse logistics pricing strategy for a green supply chain: A view of customers' environmental awareness," International Journal of Production Economics, Elsevier, vol. 217(C), pages 197-210.
    5. Xuehong Gao, 2019. "A Novel Reverse Logistics Network Design Considering Multi-Level Investments for Facility Reconstruction with Environmental Considerations," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    6. Assarzadegan, Parisa & Rasti-Barzoki, Morteza, 2020. "A game theoretic approach for pricing under a return policy and a money back guarantee in a closed loop supply chain," International Journal of Production Economics, Elsevier, vol. 222(C).
    7. Huihui Liu & Xiaohang Yue & Hui Ding & G. Keong Leong, 2017. "Optimal Remanufacturing Certification Contracts in the Electrical and Electronic Industry," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    8. Yang, Hui & Chen, Jing & Chen, Xu & Chen, Bintong, 2017. "The impact of customer returns in a supply chain with a common retailer," European Journal of Operational Research, Elsevier, vol. 256(1), pages 139-150.
    9. Kumar, V.N.S.A. & Kumar, V. & Brady, M. & Garza-Reyes, Jose Arturo & Simpson, M., 2017. "Resolving forward-reverse logistics multi-period model using evolutionary algorithms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 458-469.
    10. Bo Wang & Ning Wang, 2022. "Decision Models for a Dual-Recycling Channel Reverse Supply Chain with Consumer Strategic Behavior," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    11. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    12. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.
    14. Ramani, Vinay & De Giovanni, Pietro, 2017. "A two-period model of product cannibalization in an atypical Closed-loop Supply Chain with endogenous returns: The case of DellReconnect," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1009-1027.
    15. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    16. Mehmet Talha Dulman & Surendra M. Gupta, 2018. "Evaluation of Maintenance and EOL Operation Performance of Sensor-Embedded Laptops," Logistics, MDPI, vol. 2(1), pages 1-22, January.
    17. Shahryar Sorooshian & Sina Fazel Khiavi & Farzane Karimi & Hassan Mina, 2024. "Link between sustainable circular supply chain and Internet of Things technology in electric vehicle battery manufacturing industry: A business strategy optimization for pickup and delivery," Business Strategy and the Environment, Wiley Blackwell, vol. 33(8), pages 8211-8232, December.
    18. Cao, Kaiying & Xu, Yuqiu & Hua, Ye & Choi, Tsan-Ming, 2023. "Supplier or co-optor: Optimal channel and logistics selection problems on retail platforms," European Journal of Operational Research, Elsevier, vol. 311(3), pages 971-988.
    19. Panagiotidou, Sofia & Nenes, George & Zikopoulos, Christos & Tagaras, George, 2017. "Joint optimization of manufacturing/remanufacturing lot sizes under imperfect information on returns quality," European Journal of Operational Research, Elsevier, vol. 258(2), pages 537-551.
    20. Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2016. "Closed-loop supply chains: What reverse logistics factors influence performance?," International Journal of Production Economics, Elsevier, vol. 175(C), pages 35-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4516-:d:1272655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.