IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4375-d1264494.html
   My bibliography  Save this article

A Unified Formal Framework for Factorial and Probabilistic Topic Modelling

Author

Listed:
  • Karina Gibert

    (Intelligent Data Science and Artificial Intelligence Research Group, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain)

  • Yaroslav Hernandez-Potiomkin

    (Intelligent Data Science and Artificial Intelligence Research Group, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain)

Abstract

Topic modelling has become a highly popular technique for extracting knowledge from texts. It encompasses various method families, including Factorial methods, Probabilistic methods, and Natural Language Processing methods. This paper introduces a unified conceptual framework for Factorial and Probabilistic methods by identifying shared elements and representing them using a homogeneous notation. The paper presents 12 different methods within this framework, enabling easy comparative analysis to assess the flexibility and how realistic the assumptions of each approach are. This establishes the initial stage of a broader analysis aimed at relating all method families to this common framework, comprehensively understanding their strengths and weaknesses, and establishing general application guidelines. Also, an experimental setup reinforces the convenience of having harmonized notational schema. The paper concludes with a discussion on the presented methods and outlines future research directions.

Suggested Citation

  • Karina Gibert & Yaroslav Hernandez-Potiomkin, 2023. "A Unified Formal Framework for Factorial and Probabilistic Topic Modelling," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4375-:d:1264494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    2. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    3. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    4. Michael Greenacre & Oleg Nenadic, 2005. "Computation of multiple correspondence analysis, with code in R," Economics Working Papers 887, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordan M. Wheeler & Allan S. Cohen & Shiyu Wang, 2024. "A Comparison of Latent Semantic Analysis and Latent Dirichlet Allocation in Educational Measurement," Journal of Educational and Behavioral Statistics, , vol. 49(5), pages 848-874, October.
    2. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    3. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    4. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    5. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    6. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    7. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    8. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    9. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    10. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    11. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    12. Higham, Kyle & de Rassenfosse, Gaetan & Jaffe, Adam B, 2020. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," SocArXiv 49qxk_v1, Center for Open Science.
    13. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    14. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    15. Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
    16. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    17. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    18. Olson, Alex, 2020. "Reading the city through its neighbourhoods: Deep text embeddings of Yelp reviews as a basis for determining similarity and change," SocArXiv 8jbvg_v1, Center for Open Science.
    19. Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
    20. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4375-:d:1264494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.