IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4233-d1256810.html
   My bibliography  Save this article

The Application of the Random Time Transformation Method to Estimate Richards Model for Tree Growth Prediction

Author

Listed:
  • Óscar Cornejo

    (Departament of Industrial Engineering, Faculty of Engineering, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepcion 4090541, Chile)

  • Sebastián Muñoz-Herrera

    (Departament of Industrial Engineering, Faculty of Engineering, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepcion 4090541, Chile)

  • Felipe Baesler

    (Departament of Industrial Engineering, Faculty of Engineering, Universidad del Bio Bio, Avenida Ignacio Collao 1202, Concepcion 4051381, Chile)

  • Rodrigo Rebolledo

    (Departament of Industrial Engineering, Faculty of Engineering, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepcion 4090541, Chile)

Abstract

To model dynamic systems in various situations results in an ordinary differential equation of the form d y d t = g ( y , t , θ ) , where g denotes a function and θ stands for a parameter or vector of unknown parameters that require estimation from observations. In order to consider environmental fluctuations and numerous uncontrollable factors, such as those found in forestry, a stochastic noise process ϵ t may be added to the aforementioned equation. Thus, a stochastic differential equation is obtained: d Y t d t = f ( Y t , t , θ ) + ϵ t . This paper introduces a method and procedure for parameter estimation in a stochastic differential equation utilising the Richards model, facilitating growth prediction in a forest’s tree population. The fundamental concept of the approach involves assuming that a deterministic differential equation controls the development of a forest stand, and that randomness comes into play at the moment of observation. The technique is utilised in conjunction with the logistic model to examine the progression of an agricultural epidemic induced by a virus. As an alternative estimation method, we present the Random Time Transformation (RTT) method. Thus, this paper’s primary contribution is the application of the RTT method to estimate the Richards model, which has not been conducted previously. The literature often uses the logistic or Gompertz models due to difficulties in estimating the parameter form of the Richards model. Lastly, we assess the effectiveness of the RTT Method applied to the Chapman–Richards model using both simulated and real-life data.

Suggested Citation

  • Óscar Cornejo & Sebastián Muñoz-Herrera & Felipe Baesler & Rodrigo Rebolledo, 2023. "The Application of the Random Time Transformation Method to Estimate Richards Model for Tree Growth Prediction," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4233-:d:1256810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. E. Kloeden & Eckhard Platen & H. Schurz & M. Sørensen, 1996. "On effects of discretization on estimators of drift parameters for diffusion processes," Published Paper Series 1996-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    2. Bruno Bassan & Ruth Marcus & Isaac Meilijson & Hovav Talpaz, 1997. "Parameter estimation in differential equations, using random time transformations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 177-199, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cleur, Eugene M & Manfredi, Piero, 1999. "One Dimensional SDE Models, Low Order Numerical Methods and Simulation Based Estimation: A Comparison of Alternative Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 13(2), pages 177-197, April.
    2. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    3. Ramaprasad Bhar & Carl Chiarella, 1997. "Interest rate futures: estimation of volatility parameters in an arbitrage-free framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(4), pages 181-199.
    4. Nafidi, A. & Gutiérrez, R. & Gutiérrez-Sánchez, R. & Ramos-Ábalos, E. & El Hachimi, S., 2016. "Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors," Energy, Elsevier, vol. 113(C), pages 309-318.
    5. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez & Eva Ramos-Ábalos, 2020. "Stochastic Square of the Brennan-Schwartz Diffusion Process: Statistical Computation and Application," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 455-476, June.
    6. Kim, Myung Suk & Wang, Suojin, 2006. "Sizes of two bootstrap-based nonparametric specification tests for the drift function in continuous time models," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1793-1806, April.
    7. Yvo Pokern & Andrew M. Stuart & Petter Wiberg, 2009. "Parameter estimation for partially observed hypoelliptic diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 49-73, January.
    8. João Nicolau, 2002. "A new technique for simulating the likelihood of stochastic differential equations," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 91-103, June.
    9. Kim, Myung Suk & Wang, Suojin, 2008. "Consistent estimation in regression models for the drift function in some continuous time models," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2682-2691, January.
    10. Cysne, Rubens Penha, 2004. "On the statistical estimation of diffusion processes: a survey," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 540, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    11. Fan J. & Zhang C., 2003. "A Reexamination of Diffusion Estimators With Applications to Financial Model Validation," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 118-134, January.
    12. Fan, Jianqing & Fan, Yingying & Jiang, Jiancheng, 2007. "Dynamic Integration of Time- and State-Domain Methods for Volatility Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 618-631, June.
    13. Suk Kim, Myung & Wang, Suojin, 2006. "On the applicability of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2210-2217, December.
    14. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez, 2019. "Stochastic Brennan–Schwartz Diffusion Process: Statistical Computation and Application," Mathematics, MDPI, vol. 7(11), pages 1-16, November.
    15. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, December.
    16. A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, January.
    17. C. H. Skiadas & A. N. Giovanis, 1997. "A stochastic Bass innovation diffusion model for studying the growth of electricity consumption in Greece," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 13(2), pages 85-101, June.
    18. Martin J. Lenardon & Anna Amirdjanova, 2006. "Interaction between stock indices via changepoint analysis," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(5‐6), pages 573-586, September.
    19. Cysne, Rubens Penha, 2004. "On the Statistical Estimation of Diffusion Processes: A Partial Survey," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4233-:d:1256810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.