IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3877-d1237626.html
   My bibliography  Save this article

Syntactic Structure-Enhanced Dual Graph Convolutional Network for Aspect-Level Sentiment Classification

Author

Listed:
  • Jiehai Chen

    (School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China)

  • Zhixun Qiu

    (School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China)

  • Junxi Liu

    (School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China)

  • Yun Xue

    (School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China)

  • Qianhua Cai

    (School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China)

Abstract

Aspect-level sentiment classification (ALSC) is a fine-grained sentiment analysis task that aims to predict the sentiment of the given aspect in a sentence. Recent studies mainly focus on using the Graph Convolutional Networks (GCN) to deal with both the semantics and the syntax of a sentence. However, the improvement is limited since the syntax dependency trees are not aspect-oriented and the exploitation of syntax structure information is inadequate. In this paper, we propose a Syntactic Structure-Enhanced Dual Graph Convolutional Network (SSEDGCN) model for an ALSC task. Firstly, to enhance the relation between aspect and its opinion words, we propose an aspect-wise dependency tree by reconstructing the basic syntax dependency tree. Then, we propose a syntax-aware GCN to encode the new tree. For semantics information learning, a semantic-aware GCN is established. In order to exploit syntactic structure information, we design a syntax-guided contrastive learning objective that makes the model aware of syntactic structure and improves the quality of the feature representation of the aspect. The experimental results on three benchmark datasets show that our model significantly outperforms the baseline models and verifies the effectiveness of our model.

Suggested Citation

  • Jiehai Chen & Zhixun Qiu & Junxi Liu & Yun Xue & Qianhua Cai, 2023. "Syntactic Structure-Enhanced Dual Graph Convolutional Network for Aspect-Level Sentiment Classification," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3877-:d:1237626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haoliang Xiong & Zehao Yan & Hongya Zhao & Zhenhua Huang & Yun Xue, 2022. "Triplet Contrastive Learning for Aspect Level Sentiment Classification," Mathematics, MDPI, vol. 10(21), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Hyun Yoon & Jong Won Jung & Seok Bong Yoo, 2024. "Auxcoformer: Auxiliary and Contrastive Transformer for Robust Crack Detection in Adverse Weather Conditions," Mathematics, MDPI, vol. 12(5), pages 1-20, February.
    2. Ze Shi & Hongyi Li & Di Zhao & Chengwei Pan, 2023. "Research on Relation Classification Tasks Based on Cybersecurity Text," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    3. Weihua Ou & Jianping Gou & Shaoning Zeng & Lan Du, 2023. "Preface to the Special Issue “Advancement of Mathematical Methods in Feature Representation Learning for Artificial Intelligence, Data Mining and Robotics”—Special Issue Book," Mathematics, MDPI, vol. 11(4), pages 1-4, February.
    4. Dehong Zeng & Xiaosong Chen & Zhengxin Song & Yun Xue & Qianhua Cai, 2023. "Multimodal Interaction and Fused Graph Convolution Network for Sentiment Classification of Online Reviews," Mathematics, MDPI, vol. 11(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3877-:d:1237626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.